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SECTION 1 

INTRODUCTION 

The Gcddard O r b i t  D e t e n i n a t i o n  Program (OODP) described i n  t h i s  m u a l  was 
developed f o r  the Special Projects Branch, Theoretical Division, Goddard space Flight Center 
by the  Sperm Rand Systems Group. 

The h i s t o r i c a l  background to the present  Program began w i t h  the developlent of a 
Protot jpe rout ine  by Analytical Uechanics Associates to demonstrate the feasibil i ty of a 
minimum variance estiastor (galaan filter) applied to t h e  updating of satellite orbits. 
Subeepuently, t he  prototype pmgram was mdified and extended by the Systems Group, under 
cont rac t  to the special Projects Branch. to accommodate the processing of real data. As 
a consequence of these efforts, a single-precis ion o r b i t  determination program was designed 
using FORTRAN I1 and FAP. 
p u b  orbits for the IMP. RELAY and TIROG satellites. 

Ident i f ied  as the Phase I Program, it has been employed to am- 

Using the  same design features which characterize the Phsse I Program, a double- 
Precis ion orbit  determination program was developed by the Systems Gmup. This Phase I1 
Program is the one described i n  this m u a l .  
offers many options both i n  its trajectory c a p u t a t i o n  and statistical estimation modes. 
One e s s e n t i a l  advance of the present  Pmgraa over the Phase I v e r s i m  is the abil i ty of t he  
former to obtain estimates of biases i n  t h e  dynemica1 and observational models. 
capsble. therefore, of updating geodetic and astrophysical parameters as w e l l  as of correct- 
ing t racking  s t a t i o n  survey errors and in s tnmen t  biases. 
also able to update trajectories during periods of t h r u s t  and to use measuregents made on 
boani a satellite. 

It is wr i t ten  e n t i r e l y  i n  HlRTRAN IV and 

It is 

The double-precision pmgram is 

Data e d i t i n g  rout ines  have been developed for r e j e c t i n g  data  w i t h  unacceptable 
fonoats,  time-ordering data fmm various t racking systems. merging the data i n  proper time 
sequence, i n s e r t i n g  time correct ions,  and converting the data f o m t s  to a standard foxmat 
s u i t a b l e  to both Phase I and m e  IS Progrars. 
to  and separate from the o r b i t  de te r r iaa t ion  Programs. 

Riese ihta editing mctines are subsidiary 

The Goddard O r b i t  Determination Program was developed under Contract “-35-9. 
This Contract was monitored for the Theoretical Division by Mr. R.K. Squires and 
Mr. D.S. Woolston, Special Projects Branch. 
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SECTION 2 
PROGRAM DESCRIPTION 

2. I INTRODUCTION 

O r b i t  detenninat ion e n t a i l s  t h e  statistical est imat ion o f  o r b i t a l  elements. o r  
equivalent ly ,  satellite pos i t ion  and veloci ty .  from t racking  data. In t h e  usual s i t ua t ion ,  
these data cons i s t  of measurements of range. rauge-rate. and angles  f r m  ground-based 
s t a t ions .  
made o f  a p r i o r i  i n fomat ion  i n  t h e  estimation process. 

The data are processed by an o r b i t  de temina t ion  program i n  which f u l l  use is 

To carry out  its functions, an o r b i t  de t ewina t ion  program requi res  two major 
components; (1) a rout ine f o r  o r b i t  predict ion or t r a j e c t o r y  computation; (2) a rout ine f o r  
s t a t i s t i c a l  estimation. 
t e n t s  of the Program, thereby providing an over-al l  v i e r  of the  material to be described in  
succeeding sect ions.  Specifically, detai led discussions o f  trajectory computation are given 
i n  Sec t ions  3 and 4: t h e  elements o f  statistical estimation are covered i n  Section 5. 

This sec t ion  introduces these tw components i n  terms of the  con- 

2.2 TRAJECTORY COMPUTATION 

Orbit predict ion,  o r  t r a j ec to ry  computation. is t h e  process of  calcula'ing the  

To accomplish t h i s  prediction, one 
pos i t ion  and ve loc i ty  o f  a spacecraf t  a t  any time l a t e r  than some i n i t i a l  time, given t h e  
vehic le ' s  pos i t ion  and ve loc i ty  at the  initial time. 
makes use o f  the  laws of  celestial mechanics as embodied i n  t h e  d i f f e r e n t i a l  equations of 
motion. 
accounts f o r  t h e  acce lera t ions  ac t ing  on the  spacecraf t .  A reference frame is erected t o  
express  the  compsnents of the  m r i o ~ s  vector q m n t i t i e s .  and the  equations of  motion are 
numerically in tegra ted ,  subjec t  to  the  given i n i t i a l  condi t ions.  

The coordinate  system used i n  t h i s  Program is based upon the  mean Earth 's  equator 
and equinox obtaining a t  oh January 1 of  the  year subsequent to t h e  i n i t i a l  time. 
d i r e c t i o n s  o f  t h i s  frame are i n e r t i a l  with respect to  the  f ixed stars: t h e  cen te r  of o r ig in  
of t h e  system, however, may be t ransfer red  from one cen t r a l  body t o  another, so t h a t  the  
spacec ra f t  motion is spec i f ied  r e l a t i v e  to a point  mass which i t s e l f  has a proper motion. 
This reference frame is called t h e  Base Date System. 

Forcing funct ions f o r  these  equations are obtained from a dynamic model which 

Coordinate 

Observations made from the  Earth are necessar i ly  i n  a system d i f f e r e n t  from t h e  
Base Date System: the ac tua l  coordinate frame is called the  t r u e  system of  date. The t rue  

2-1 
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system d i f f e r s  from the Base Date System because of the Earth 's  nutation and the precession 
of the equinox. In going from one frame to the other ,  the t rue system of date is reduced 
to the mean system of date  by a nutation transformation. A vector expressed i n  the r e s u l t -  
i ng  mean system is then transformed to  the Base Date System by a precession matrix. 

For ohservations made on the Moon, account must be taken of lunar l ib ra t ion .  I n  
t h i s  instance,  a transformation is  made fmm a coordinate frame rigidly attached to  the Moon 
to  the t rue system o f  date.  Nutation and precession transformations then ro ta te  the obser- 
vation into the Base Date System. 

All accelerations act ing on the vehiclt. are  specified i n  the Btrse Date System. 
The gravi ta t ional  a t t r a c t i o n s  of bodies i n  the so la r  system are  functions only of posit ion 
w i t h  respect, to the vehicle; consequently, the Program employs an ephemeris g i v i n g  planetary 
coordinates re la t ive  to the Sun and lunar coordinates r e l a t i v e  to  t h e  Ea r th ,  a l l  i n  a Base 
Date System. A Base Date System is specified for  overlapping two-year blocks of data ,  the 
Date correswnding t o  the middle of the  two-year f i l e .  Specifying an i n i t i a l  time causes 
the Program to choose an ephemeris f i l e  having as  its Base Date the beginning n f  the year  
following the i n i t i a l  time. I n  t h i s  way, a t  l e a s t  one f u l l  year of ephemeris information 
is avai lable  before a change of reference system is necessary. 

Another accelerat ion specif ied i n  the Base Date System without transformation 1s 
t h a t  a r i s i n g  from s o l a r  radiation pressure. 
l a t i v e  posit ion between the Sun and the vehicle,  its d i r ec t ion  is given i n  the proper frame 
by manipulating information from the ephemeris. 

Since t h i s  accelerat ion is a function of re -  

Other accelerat ions,  such a s  E a r t h  oblateness e f f e c t s  and ut.mospheric drag m u s t  
Higher g rav i t a t iona l  be transformed through nutation and precession to  the proper frame. 

terms a r i s i n g  fmm the Moon's f i e l d  a re  subject to  the addi t ional  transformation of l i b r a t i o n .  
Thrust accelrrat ions.  on the o the r  hand, m a y  be specif ied i n  an a r b i t r a r y  coordinate frame. 
I f  they a re  given i n  the Base Date System, no transformations a re  necessaiy, whereas i f  
they a r e  described i n  any other  frame, rotat ion matrices appropriate t o  the s i t u a t i o n  m u s t  
be usjrd. 

Spaceciaft motion is always computed r e l a t i v e  t o  some reference bod.?': a planet ;  

The remaining accelerat ions a r e  
the Moon; the Sun. Consequently, t he  equations of motion contain a term which accounts f o r  
the accelerat ion of the reference lody on the spacecraf t .  
usuaI Iy, bu t  not always, much smaller than t h i s  primary accelerat ion and a r e  therefore  
cal led yertuihations.  
ances i n  the orb i t  deteimined by the reference body and the  in i t ia l  conditions.  Two ex- 
ceptions a r i s e  i n  t h e  cases of motion thruugh a dense atmosphere, and the appl icat ion of 
h igh  thrust  t o  the vehicle. I n  both these instances,  the per turbat ion accelerat ion may 
equal or exceed the primary accelerat ion.  

I n  most cases,  they can he regarded a s  g i v i n g  r i s e  to  small d i s t u r b -  

Reference bodies a re  changed dur ing  a t r a j e c t o r y  ca l cu la t ion  when the spacecraf t  
leaves the "region of influence" associated wi th  a p a r t i c u l a r  body. 
a r e  com~utetl for a body w i t h  respect to the object  of which i t  is a s a t e l l i t e .  
Planet has a region of influence defined r e l a t i v e  to the  Sun, and the Moon has a s imi l a r  
region defined re la t ive  to the Earth. 
c i t y  8s well a s  position w i t h  respect t o  the new reference body must be calculated.  

Regions of 1nflUenCe 
Hence, each 

I n  t r a n s f e r r i n g  i n t o  o r  out of such a region, velo- 

2 - 2  



PROGRAM DESCRIPTION 

I -  

Since  no ana ly t i c  so lu t ion  e x i s t s  f o r  t h e  equations of  motion, numerical methods 
I n  the  Program. a choice are employed to  compute the  components of posi t ion and veloci ty .  

may be made between using s t r a i g h t f o m a n i  in tegra t ion  and using Encke's method. 
technique, c a l l e d  Couel lvs  method. is conceptually simple, but  s u f f e r s  f n w  prec is ion  and 
machine running time probleas. Ehcke's method, although somewhat more complicated, g ives  
dividends i n  both precis ion and machine eff ic iency.  
a r i s i n g  fm t h e  reference body cen t r a l  force f i e l d  is taken as a nominal trajectory. 
per turba t ion  accelerations are in tegra ted  and t h e  r e su l t i ng  pos i t ion  and ve loc i ty  increments 
are added t o  t h e  Keplerian solut ions.  Naturally,  Encke's method is most e f f e c t i v e  when the 
per turba t ions  are small. 
f l i g h t  i n  which the  cen t r a l  g rav i t a t iona l  force and t h e  t h r u s t  acce le ra t ions  def ine  the  
nominal trajectory. 
grated to  obta in  t h e  total trajectory. 

lhe fomer 

In  t h i s  procedure, t h e  Keplerian orbit  
The 

This Prograe employs an extension of t h e  Ihcke procedure for powered 

Perturbations t o  t h i s  more cauprehensive reference o r b i t  are then in t e -  

Both ground-based and on-board observations can be camplted i n  t h e  Program. Such 
o k e r v a t i o n s  m a y  be corrupted wi th  random noise  of spec i f ied  variance to give f i c t i t i o u s  
data .  These "data" f ind  appl ica t ion  in  various types of systems s tudies .  The Program also 
generates acqu i s i t i on  information for t racking s ta t ions .  

Corrections are provided i n  t h e  Program f o r  t h e  re f rac t ion  of an electromagnetic 
s igna l  by t h e  troposphere o r  by t h e  ionosphere. Adjustments are computed for errors i n  
e l eva t ion  angle ,  range, and r ad ia l  veloci ty:  o t h e r  angular cor rec t ions  are ca lcu la ted  from 
t h e  adjustment i n  e leva t ion  angle. 

2.3 STAT1 STI CAL COMPUTATI ONS 

O r b i t  determination has come to mean, i n  modern usage, t he  aggregate of those 
methods whereby i n i t i a l  estimates of a spacecraf t ' s  pos i t ion  and ve loc i ty  are s ta t is t ical ly  
updated from observations. Updating need not be r e s t r i c t e d  to pos i t ion  and veloci ty .  bu t  
m a y  also be applied to  unce r t a in t i e s  i n  the dynamjcal and observational models. Uncertain- 
ties i n  both models give rise to  inaccuracies  i n  t h e  pred ic t ion  of  spacecraft motion, and 
affect, as well, t h e  confidence to be placed i n  the  predict ion.  

To implement the  estimation of the vehicle  s ta te ,  and to correct the  cons tan ts  of  
t h e  dynamical and observational m d e l s ,  the ava i lab le  data must be processed by some statis- 
tical technique within t h e  Prognrm. Before reaching t h i s  point ,  however, t he  information 
from t h e  t racking  s t a t i o n s  is first subjected to a da ta  e d i t i n g  rout ine ex terna l  to the 
Program. In  t h i s  rou t ine ,  t he  da ta  are time-ordered, time-corrected. wid da'd p~liits r h i c h  
have been labe l led  as bad a t  t h e  t racking  s t a t i o n  are removed from the re su l t i ng  da ta  tape. 
The Program can then process t h i s  tape and e d i t  ou t  any data poin t  which falls outs ide  a 
designated statistical l i m i t .  A f i n a l  tape is thereby produced which is loaded i n t o  the  
Program as t he  raw material of orbit  determination. 

The est imat ion procedure may be recursive o r  non-recursive, and m a y  use various 
criteria t o  def ine a "best estimate" of the quan t i t i e s  to  be updated. 
is typified by minimum variance,  o r  Kalman, f i l t e r i n g  i n  which da t a  poin ts  are processed 
success ive ly  i n  their na tu ra l  tiffie order. Non-recursive est imat ion,  l i k e  least-squares ,  
p rocesses  "batches' of d a t a  taken over r e l a t ive ly  long time arcs. 

Recunive estimation 

The Program provides a 
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choice between W e ' s  estimation (which includes least-squares)  and minimum variance. 
Baye's estimate m y  be made e i t h e r  recursively o r  non-recursively. 

All of t h e  estimation procedures make use of a l inear ized s t a t e  vector,  the cam- 
ponents of which a r e  the posi t ion and veloci ty  deviations from a nominal t r a j e c t o r y ,  and the  
unce r t a in t i e s  i n  t h e  constants of the dynamical and observational models. 
of a l inear ized vector necess i t a t e s  the calculat ion of three matrices: the s t a t e  t r a n s i t i o n  
matrix; the covariance matrix; the matrix of observation p a r t i a l  der ivat ives .  

The employment 

A s t a t e  t r a n s i t i o n  matrix r e l a t e s  the l inear ized s t a t e  vector a t  one time to  the 
s t a t e  vector at  some other  time. 
variances of the s t a t e  vector components, whereas the off-diagonal elements a re  the covari-  
ances among these same components. 
min i s t i c  re la t ionship between the l inear ized observation residuals  and the s t a t e  vector.  
Each of these matrices is used in  computing an optimal estimate of the s t a t e .  

A covariance matrix contains as diagonal elements the 

The matrix of observation partials e s t ab l i shes  the deter- 

Recursive procedures give the  optimal es t imate  a t  each da ta  time. Non-recursive 
estimation, on the o the r  hand, updates the vehicle s t a t e  a t  one point  i n  the "batch" of 
data; an optimal estimate a t  any o the r  point is obtained by in t eg ra t ing  the t r a j ec to ry  from 
the updated s t a t e .  

The Program does not use t h e  conventional l inear ized posi t ion and veloci ty  com- 
ponents i n  the s t a t e  vector. 
statistical correction matrix can be computed over a longer time span t han  can the corre-  
sponding matrix for  the conventional vector. A closed-form point transformation has been 
ieveloped r e l a t ing  t h e  conventional s t a t e  vector and the  parameter vector. The parameter 
t r ans i t i on  matrix is a l s o  avai lable  i n  closed form when computed f o r  a Keplerian o r b i t .  
I'hroughout t h i s  Program, it is assumed t h a t  the Keplerian t r a n s i t i o n  matrix is a good approxi- 
nation t o  the t rue t r a n s i t i o n  matrix. 

Rather, i t  uses a s e t  o f  d i f f e r e n t i a l  parameters f o r  which the 

2.11 SCOPE OF THE MANUAL 

The Analytical Manual is one of three manuals which have been writ ten t o  descr ibe 
the Orb i t  Determination Program. 
and use r ' s  information. 

The o the r  two volumes a r e  concerned wi th  programming a spec t s  

This volume gives t h e  mathematical de r iva t ions  behind important rout ines  and i n d i -  
:ates features  which are  uniqhe i n  the Program. 
integration techniques, the special  treatment of powered f l i g h t  t r a j e c t o r i e s ,  and the Proce- 
dure f o r  reference body t ransfer .  Section 4 dea l s  with a l l  the per turbat ions considered i n  
t r a j e c t o r y  computation, including planetary a t t r a c t i o n s ,  planetary oblateness,  atmospheric 
drag, and radiation pressure. S t a t i s t i c a l  ca l cu la t ions  a r e  t r ea t ed  i n  Section 5,  and Section 
6 develops the computation of observables, the matrices of observation partial de r iva t ives ,  
and ce r t a in  corrections employed ri t h  the observations. 
coordinate systems used i n  the Program together wi th  the  complement of transformations em- 
ployed; a special  transfoxmation used i n  powered f l i g h t  computations; propagation Corrections 
made to r a w  data  provided to  the Program by tracking s t a t i o n s .  

Section 3 covers t h e  equations o f  motion, 

Three appendices describe: the 

I 
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SECTION 3 

TRAJECTORY DETERMINATION 

3. I BENERAL 
The equations of motion for a space vehicle are second-order differential equations 

These forces which describe the accelerations arising from the forces acting on the vehicle. 
are generally classified as follows: 

a. Gravitational, primary 

b. Gravitational, harmonic 

c. Thrust 

d. Drag 

e. Radiation pressure. 

The simplest gravitational force field is that due to a single point mass. 
equations of motion are 

In this case, the 

where 

p=GM 

G = the universal gravitational constant 

Y = 888s of the vehicle 

R = position of the vehicle w i t h  respect to the point mass 

With initial conditions R, and R,, equation (1) defines a "tm-body" or Keplerian orbit which 
may be described in closed form in terms of its true anomaly or eccentric anomaly. 

A more conplicated gravitational field may be constructed by considering the forces 
contributed by additional point masses. In this instance, the equations of motion become 
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where t h e  sum of the accelerat ions,  P,, caused by the other  point masses is small compared 
t o  the  acceleration of t h e  o r i g i n a l  mass. The P, acceleration is given  by 

3 - 2  

( 3 )  

where 

pj = GMj, where Mj is the mass of the j t h  body 

R . = vector from the vehicle t o  the j t h  body VJ 

R j  = vector from o r ig ina l  mass t o  the j t h  body. 

The form of equation ( 2 )  implies t h a t  the o r i g i n a l  point  mass provides the major 
Portion of the vehicle’s  accelerat ion and t h a t  the remaining accelerat ions are perturbations.  
I t  is customary t o  e r e c t  a reference frame, f o r  the equations of motion, having t h e  pre- 
dominant contributor t o  the force f i e l d  a t  the  or igin.  Consequently, the o r ig ina l  mass is 
frequently called t h e  reference body. 

For R r e a l i s t i c  model, t he  reference body cannot be considered as a point mass; 
f o r  t r a j e c t o r i e s  c lose  t o  t h i s  body, i t  w i l l  be necessary t o  compute accelerat ions a r i s i n g  
from harmonics i n  t h e  body’s g rav i t a t iona l  po ten t i a l .  The Earth’s  po ten t i a l ,  fo r  example, 
is usual ly  expressed i n  terms of associated spherical  harmonics, whereas the  Moon’s po ten t i a l  
is given by the moments of inertia about its th ree  major axes. 

A homogeneous ponderable body, i . e . ,  a homogeneofis body hav ing  appreciable weight, 
which is pe r fec t ly  spherical  i n  shape may be considered a s  a point  mass fo r  po ten t i a l  
ca l cu la t ions .  Therefore, accelerat ions due t o  g rav i t a t iona l  harmonics r e s u l t  from the  
oblateness ,  i .  e . ,  deviation from purely spherical  shape, of t he  associated body. D e s i g n a t i n g  
these oblateness per turbat ions a s  P,, the  equations of motion wcome 

grav 
Thrust acce l e r a t  

( 4 )  

ons, designated by p,, may i n  f a c t  be l a r g e r  than  the primary 

A similar s i t u a t i o n  may e x i s t  for  drag acce le ra t ion ,  P,. 
t a t i o n a l  accelerat ion of t he  reference body. In such cases ,  t he  th rus t  accelerat ion 1s 

not considered a per turbat ion.  

The f i n a l  Perturbation considered here is t h e  e f f e c t  of r ad ia t ion  pressure on 
space vehicles  having a high r a t i o  of su r face  area t o  mass. Radiation pressure may a r i s e  
from th ree  sources: 

a. Direct sunl ight  

b. Reflected s u n l i g h t  

c .  Planetary radiat ion 



TRAJECTORY DETERIINATION 

I n  the  Program, only t h e  f irst  source is considered; t h e  vehicle  accelerat ion from sunl ight  
is designated Ps. 
umbra or penumbra of a planet .  ( f igure  3.1-1). it is necessary to  compute t h e  veh ic l e ' s  
Position r e l a t i v e  to  the  cones of shadowing. 
t i o n  factor is computed which ind ica tes  t h e  percentage of total sunl ight  ava i lab le  for  
i l lumina t ing  t h e  vehicle. 

Since the vehicle  is not  always in  f u l l  sunl ight ,  but may be i n  the 

If t h e  vehic le  is i n  a penumbra, an  illumina- 

Accounting for t h e  primary gravi ta t iona l  f i e l d  of the reference body and the f i v e  
types of per turba t ive  accelerat ions,  the equations of motion become 

There are two basic methods UY m i c h  t h e  so lu t ion  t o  equation ( 5 )  my be obtained, 
Wcke's method and Cowell's method. I f  equation (5) were t o  be numerically integrated in  a 
straight-forward manner, t he  integrat ion would be horn as Cowell's method. The s implici ty  
of t h i s  method is o f f s e t  by t h e  large acce lera t ions  which must be integrated.  
consequence of t h e  acce lera t ion  magnitudes, small time increments have t o  be used in  t h e  
in tegra t ion ,  and machine roundoff erxuraecumulates rapidly.  Independent evaluations a t  m a n y  
companies and u n i v e r s i t i e s  have shown t h a t  cowell's method requires  more machine time (by a 
factor of t en )  than  o the r  per turbat ional  schemes. Despite these  drawbacks, Cowell's integra-  
t i o n  is still widely used and is included i n  t h e  Program t o  permit a direct comparison of 
r e s u l t s  w i t h  f a c i l i t i e s  employing t h i s  technique. 

As a 

His to r i ca l ly ,  Encke's method is older  than Cowell's, although t h e  former is more 
sophis t ica ted .  
whereas Ehcke's was developed f o r  hand computation. In Ehcke's method, it is assumed tha t  
t h e  pe r tu rba t ive  accelerat ions.  Pi, a r e  small compared t o  t h e  reference body accelerat ion.  
Consequently, when ne i the r  t h e  drag nor t h e  t h ' u s t  acce le ra t ions  are very large, t h e  
so lu t ion  of equation (1) is a good approximation to  t h e  t r u e  o rb i t .  
it is only necessary t o  in t eg ra t e  t h e  difference between the  acce lera t ions  on the  two-body 
o r b i t  and the  total  acce lera t ions  ac t ing  on t h e  vehicle. 
becme second-order d i f f e r e n t i a l  equations describing the  acce lera t ion  differences.  

Cowell's method requi res  a modern high-speed computer t o  be p rac t i ca l ,  

Under these condi t ions,  

The equations of notion then 
Let 

= R - R,, 

where bB is t h e  pos i t ion  of the vehic le  i n  t e n s  of the  two-hody orbit. Then, 

Equation (7) is integrated t o  obta in  
respec t ive ly .  t o  obta in  the instantaneous posi t ion (R) and veloci ty  (R) of the  vehicle. 
quan t i ty  5 is commonly re fer red  t o  as  t h e  "lbcke" term. 

and E. These quan t i t i e s  are t t e n  added t o  R,, and &,, 
The 
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. 

Figure 3 . 1 - 1 .  Vehicle Shadowing 
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I - -  

If the  t h r u s t  or drag acce lera t lons  approach $he reference body acce lera t ion  in  
magnitude, a new reference trajectory lust acmehow be obtained i f  Encke's method is to be 
used. 
safely be treated as a perturbat ion.  For thrust, however. a stlbroutine has been designed 
which coraputes t h e  trajectory a r i s i n g  f ra  the re ference  body gravi ta t iona l  f ield and a 
spec i f ied  t h r u s t  schedule. 
motion now descr ibe t h e  acce lera t ion  d i f fe rence  between positions on t h i s  orbit and t h e  ac tua l  
instantaneous vehic le  positions. Let 

In t h i s  program. vehic le  a l t i t u p e e  are l imi ted  to  those a t  which atmospheric drag can 

Using this solut ion as t h e  nominal trajectory, t h e  equations of 

where 4 is the  pos i t i on  of t h e  vehic le  i n  terms of t h e  nominal trajectory. men. 

Detailed desc r ip t ions  of t h e  Program's implementation of Wcke' s and Correll' 8 methods 
are provided in  paragraphs 3.2 and 3.3, respectively. "he special case where t h e  t h r u s t  
acce le ra t ion  is too large to  be treated as a per turba t ion  is described i n  paragraph 3.4. 
The method and cri teria for se l ec t ing  t h e  reference body and t r ans fe r ing  from one reference 
body t o  another is discussed i n  paragraph 3.5. 

3 - 2 ENCKE ' S  METHOD . 
3.2. I E Q U A T I O N S  O F  WOTIOM. As described i n  paragraph 3.1, t h e  basic equations for 
Encke'r method a r e  as follows: 
When Y, can be considered as a perturbat ion,  

R = R,, + 

and 

Whtm P, is too large to  be t r ea t ed  as a per turbat ion,  

R = R, + E '  

and 

( 3 )  
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The determination of posi t ion and velocity of the vehicle,  hB and R, , i n  a two- 
body o r b i t ,  is described i n  paragraph 3.2.2. 
nominal t r a j ec to ry  vectors ,  R, and R,, is discussed i n  paragraph 3.4. 

equations (1) and (2) or (3) and (4). 

The determination of the  powered F l i g h t  

Paragraph 3.2.3 discusses the integrat ion scheme used by the Program t o  implement 

The use of a reference o r b i t  i n  Encke's method assumes t h a t  the perturbations a re  
kept small. Iherefore ,  the  s i z e  of the Encke term 
magnitude of t h i s  term becomes too large,  a new reference o r b i t  is computed. 
computing the new reference o r b i t  is commonly referred t o  as " rec t i f i ca t ion" .  
the following r e c t i f i c a t i o n  c r i t e r i a  a r e  employed: 

(or e ' )  must be monitored. When the 
The process of 

I n  t h e  Program, 

and 

Nom: 
is large,  s u b s t i t u t e  6' f o r  6 and % f o r  RTB i n  t h e  equations. 

Fauations (5) and(6) apply when P, is small. When P, 

3.2.2 
and k,,, respectively.  of the vehicle i n  a Kepler o r b i t  can be writ ten i n  terms of t h e  
i n i t i a l  posit ion and veloci ty ,  & 

D E T E R M I N A T I O N  O F  TWO-BODY O R B I T  V E C T O R S .  The posi t ion and veloci ty ,  hB 
and k , respect ively,  as follows: 

BO TBO 

(1)  
- 

RT, - f RTB,  + g RTB,  

and 

. .  

where f and g are e x p l i c i t  functions of the d i f f e r e n t i a l  eccen t r i c  a n O m d Y  Of the  Kevler 
o r b i t .  Equations (1) and (2) are  solved, u s i n g  Herr ick ' s  method as sumar ized  i n  the follow- 
i n g  analysis ,  t o  yield the R,, and R,, at any in s t an t  on the same two-body o r b i t  as RTB 

RTB,. 
from equations (1) and (2). According t o  Herrick, 

and 
- 0  

Herrick's method f i r s t  determines f ,  k, g, and i ,  and then computes R, and RTB 

C f = l - -  
R ~ ~ o  

( 3 )  
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JP 

-J @ t =- 
UT., 

- Y = 6 (t - to) - $*o x + do c + co u 

8 

A = do 6 + c0 C 

. 
- %Bo '02 

- 1  
P =o - (13) 

0 

- rrclproc8l of semi major 8xl8  of Kepler orbit  (14 )  
1 -  3 80 

a %Io P 5 I .- 
------ 
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x = Herrick's var iable ,  a l i n e a r  function of d i f f e r e n t i a l  eccent r ic  anomaly . 

t = time corresponding t o  and RT, 
to = time corresponding t o  RTB and R 

0 TBO 

p = universal  g rav i ta t ion  constRnt . 

Solution of equations (3) through (6) requires  t h e  determination of X. I n i t i a l l y ,  a f i r s t  
approximation of X is made. 
(7), (B),  and (9) t o  y ie ld  a more accurate  estimate of X.' 

Then a Newton-Raphson i t e r a t i v e  process is useU on equations 

Having obtained a satisfactory estimate of X, equat!ons (3) tFrough (6) are solved 
using equations (7) through (15): The computed yalues ofsf, f ,  g, and g are then subs t i tu ted  
i n t o  equations (1) and (2) t o  determine RTB and hB. 
and (9))  are i n f i n i t e  series expansions. 
conditions become very large, a great many terins would have t o  6e employed t o  limit the 
t runcat ion error.  
machine roundoff error. 
c a l c u l a t e  R,, and R,, a t  time tj  where t j  - to is large,  select an intermediate time ti such 
t h a t  t j  > ti > to. 

The funct ions U and C (equations (8) 
Since the  aTgument X2/a could under given 

However, t h e  use of many terms r e s u l t s  i n  an increased accumulation of 
A s h i f t i n g  epoch concept is used t o  cope with t h i s  Problem. TU 

. .  
The epoch is s h i f t e d  by employing 

~ 

. .  ) 
R T B i  = f i  R ~ ~ o  ' R T ~  J 

0.. 

Then, 

( 1 6 )  

~y carefu l  se lec t ion  of t j  - ti, the argument X2ij/a m a y  be kept small. 

3.2-3 I N T E G R A T  I OW TECHW I QUE 

3 .  2.3. I l n t r o d u c t  i o n .  Equation (4) of paragraph 3.2.1 is integrated numerically by 
t h e  Program. The numerical in tegra t ion  process is divided i n t o  two stages: 
procedure and a long-term procedure. 
require  knowledge of previous data points.  
provide t h e  i n i t i a l  data points  f o r  t h e  long-term numerical procedure. ) 

a s t a r t i n g '  
(Most long-tern numerical in tegfa t ion  prbcedures 

Thus', t h e  s t a t t i n g  procedure is needed t o  

The long-term numerical in tegra t ion  procedure present ly  i n  use i n  t h e  ITEM and 
MINIVAR programs is an Ad,ams s ixth-order  predictor method (without corrector) f o r  second- 
order d i f f e r e n t i a l  equations. It w a s  des i red ,  however, t o  test  a broader class of procedures 
before deciding on one for use as t h e  long-term numerical in tegra t ion  procedure t o  be used 
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s t a r t i n g  procedure. The successive value form of the method is t r ivial  t o  start UP, bu t  
interpolat ion involves t h e  Lagrangian interpolat ion formulas, and changing intervals is, again. 
almost impossible. 
i n  t h e  present ITEM Program, a s i t u a t i o n  where the s t a r t i n g  solut ion is ca l l ed  28 times, b u t  
used only 7 times. 

The i n a b i l i t y  t o  change in t e rva l s  immediately a f t e r  starting causes, a s  

The Nordsieck method is f a i r ly  d i f f i c u l t  t o  s t a r t ,  but very ai2nabla t o  a r b i t r a r y  
changes of time in t e rva l s  and t o  interpolat ion t o  intermediate points. Five points a r e  a l l  
that a r e  needed t o  start a f t e r  a change in  time interval  (of about 4 : l ) .  

Due to its v e r s a t i l i t y ,  t h e  Nordsieck method of degree 5 (cal led m = 6 b? Nordseick) 
without i t e r a t ion  and without choice of in t e rva l  is used i n  the Program. Paragraph 3 . 2 . 3 . 2  
summarizes the  Nordsieck method as appl ied i n  t h e  Program. Paragraph 3 . 2 . 3 . 3  descr ibes  the 
s t a r t i ng  procedure selected f o r  t he  Progrenn. 
of t h e  s t a r t i n g  values t o  the  form required by the Nordsieck method. 

Paragraph 3 . 2 . 3 . 4  describes the transformation 

3.2. 3. 2 N o r d s i e c k  M e t h o d .  The Nordsieck method of long-term numerical integrat ion 
(reference 1) is used t o  solve a system of equations of t he  form 

where 

1 = 1 , 2 , 3  ..... 
Equations ( 1 )  are of ten shortened t o  

when the  solution t o  equation (2)  is approximated by a polynomial of degree f ive,  t he  
predictor  is given by 

L 

h 3  h 4  h 5  

4 !  51 6! 
-t - y ” ”  ( X , )  t- Y ” ” ’ ( X 0 )  t - Y 

where 

h is t h e  i n t eg ra t ion  step s i z e  ( i n t e r v a l )  

Xo is the value of x a t  last in t eg ra t ion  

3 - 1 0  
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Let 

where 

y (  ) is the  value of y at ( ) value of x 

primes denote der iva t ives  with respect to x 

Nordsieck's cor rec tor  is given by equation (10): 

C o r r e c t o r  = K l h  [f ( x o  + h )  - fp] 

K1 is a c o n s t a n t  ( 0 . 3 1 5 5 9 1 9 3 1 )  

f ( x o  t h )  i s  t h e  v a l u e  of f ( x , s )  computed a t  x = x o + h .  Y ( x o  + h )  

f p  is a p r e d i c t e d  v a l u e  for  f ( x , y )  a t  x = xo + h ,  and is g i v e n  by 

f p  = f ( x o )  + 2 a ( x 0 )  + 3 b ( x  0 ) + 4 c ( x 0 )  + 5 d ( x 0 )  + 6e(X0) ( 1 1 )  

Hence. from equat ions (3) through (11).  t he  value of y at x = xo + h is given by 
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The values  of t h e  successive higher de r iva t ives  (a (x),  b (x ) ,  c (x ) ,  d (x ) ,  e ( x ) )  at 
x xo t h are  given i n  terms of  t h e i r  values  a t  x = xo by 

e(xo + h)  = e(xo) t K6 f ( x o  t h)  - L 
where 

K2 1 .141666667  

K 3  = 0 . 6 2 5 0  

K 4  = 0 . 1 7 7 0 8 3 3 3 3  

K 5  = 0 . 0 2 5 0  

K 6  = 0.0013888889 

Successive appl ica t ions  of equations (12) through (17) are used t o  provide a 
so lu t ion  to  equations (1). 

The in tegra t ion  in t e rva l ,  h, is readi ly  changed, t h e  change being accomplished by 
us ing  new values o f  a ( x ) ,  b(x) ,  c ( x ) ,  d ( x ) ,  and e(x) .  These new values are obtained from 
t h e  following equations: 

d n ( x )  = B 4 d o ( x )  (22) 
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, where the  subscr ip ts  n and o stand fo r  new and old,  respectively.  

In te rpola t ion  between computed so lu t ions  for y is also eas i ly  accomplished. Let 

I 
a = ( x 2  - x, )h  ( 2 4 )  

where 

x = v a l u e  o f  x a t  which t h e  v a l u e  o f  y is d e s i r e d  

x 1  - v a l u e  of x a t  which y was computed 

2 
- 

Then, 

y ( x 2 )  = Y(x,)  + h [f(xl) + ua(x,) + a2b(xl) + a3c(xl)  + a4d(xl) + a5e(x1) ] (25) 

In t h e  Encke method, t h e  Nordsieck method is used to  in tegra te  the  d i f f e r e n t i a l  
f 'wat ions  of the  mcke term. 
:'t.presents , and x represents  time, t. 

For t h i s  integrat ion,  Y of equation (3) represents  t, $ 

3 .  2 .  3 . 3  S t a r t i n g  Method.  The Nordsieck method (paragraph 3.2.3.2) is used t o  continue 
t h e  so lu t ion  o f  t h e  Encke d i f f e r e n t i a l  equations, once a s t a r t i n g  procedure generates t h e  
numerical so lu t ion  a t  enough points to  evaluate  t h e  successive higher der iva t ives  of t h e  
apProximating polynomial a t  t h e  start of the Nordsieck method. 

Nordsieck's method may be used i n  a s e l f - s t a r t i n g  mode. When it is used t h a t  w a y ,  
i t  assumes t h a t  t h e r e  is no d iscont inui ty  in  t h e  so lu t ion  for f ive  time steps. Since t h e  
p'inimum variance technique introduces a r e c t i f i c a t i o n  (discontinuity) a t  each data point,  
iind many d a t a  poin ts  m a y  occur i n  f i v e  time steps, t he  condition f o r  cont inui ty  w i l l  no t  i n  
c t w r a l  be s a t i s f i e d .  

Mostof the  s t a r t i n g  procedures involve ana ly t ic  d i f f e r e n t i a t i o n  of the Encke terms. 
T h i s  is not feasible .  

There remains the  Runge-Kutta procedure which is s e l f - s t a r t i n g  and has been used 
M T e S S f u l l y  previously. The Program uses  the  G i l l  modification of Runge-Kutta ( reference 
E ) .  for the s t a r t i n g  procedure, because it introduces some s impl i c i ty  and error reduction. 
The d i f f e r e n c e s  between G i l l  and Runge-Kutta are minor, and do not require  a new s u b s t w t i a -  
t i o n  of its use as a s t a r t i n g  procedure. 

Each en t ry  i n t o  the Runge-Kutta-Gill (RKG) method y i e l d s  a pair of values f o r  y ( t )  
and i ( t ) .  
d l v i r l i r t g  t h e  in tegra t ion  in t e rva l ,  h. by four. 
development of y ( t )  for  a given e n t r y  i n t o  t h e  RKG method: 

The RKG method develops the values of y ( t )  and i ( t )  in  a 4-step Process by 
Ihe following equations summarize the  

i i  nd 

( 2 )  

3 - 1 3  
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where 

j = t h e  RKG step number (va r i e s  from 1 through 4) 

a j ,  b j ,  and c j  are constants  

The values of i ( t ) j - l  are determined external  t o  t h e  RKG method; they are computed by summing 
t h e  per turbat ion acce lera t ions  a t  t h e  corresponding time. 

The Runge-Kutta-Gill (RKG) procedure is entered f i v e  times. The values of  a ( t ) ,  
b ( t ) ,  c ( t ) ,  d ( t ) ,  and e ( t )  are computed by f i t t i n g  a polynomial t o  the  s i x  sequent ia l  po in ts  
corresponding t o  the  RKG d a t a  plus  the  i n i t i a l  estimate used i n  the  RKG method. 
for t h i s  f i t t i n g  a r e  given i n  paragraph 3.2.3.4. 

The equations 

3 . 2 . 3 . 1 )  T r a n s f o r m a t i o n  o f  R K G  D a t a  I n t o  Form S u i t a b l e  f o r  Wordsieck Method.  
The s t a r t i n g  procedure y i e l d s  t h e  so lu t ions  of t he  d i f f e r e n t i a l  equations and t h e i r  rates 
of change at s i x  successive times. It is necessary t o  transform these  d a t a  i n t o  t h e  forin 
required by the Nordsieck long-term numerical in tegra t ion  procedure. 

For each f i r s t - o r d e r  d i f f e r e n t i a l  equation, t h e  Nordsieck method requi res  the  
following f i v e  higher  der iva t ives  evaluated at  t = to: 

I 

51 
h 4  

d ( t o )  = 

The RKG s t a r t i n g  method provides d a t a  f o r  y ( t )  and i ( t )  a t  the  s i x  time i n t e r v a l s  
UP t o  and including to, i. e . ,  RKG provides: 

Y (to 1 h,) 
~ ( t ,  - h)  

Y ( t ,  - 2h) 

Y ( t o  - 3h) 

$(to - h )  

ict, - 2h) 

i ( to  - 3h) 
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I - -  

The required values for a(tO)# b(to), c(t,). d ( t o ) ,  and e(to) w i l l  be found by using Lagrange's 
In te rpola t ion  F o r m l a  t o  fit a power series of degree f i v e  to t h e  j(t) data  provided by t h e  
RKG method. 
data. Let 

The power series w i l l  then be successively d i f f e ren t i a t ed  t o  obtain t h e  required 

t - t o  
x =  

h 

and l e t  primes denote de r iva t ives  wi th  respect t o  x. Therefore, 

From Lagrange's In te rpola t ion  Formula, 

where y(x)  is the  desired power series 

( 9 )  

(10) 
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yi are t h e  values determined by t h e  RKG method, 
(5) through (10) y i e l d s  

Multiplying o u t  t h e  f a c t o r s  i n  equations 

From equations (1) and (3), 

Y"" ( 0 )  
= 

51 

(17) 

y ) I t t '  ( 0 )  
e ( t , )  = 

6 !  

Successively d i f f e r e n t i a t i n g  equation (4) w i t h  respect t o  x, (using equations (12) 
through (16)), s e t t i n g  x = 0, and s u b s t i t u t i n g  i n t o  equat ions (17) y i e l d s  t h e  following i n  
matrix notat ion;  

3- 16 
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or 

1 

120 
- - - .  

1 
1440 

- 0  
- - 

--24 150  -400 600  -600 274- 

-50  305  -780 1070 -770 225 

-35  205 -490 590  -355  8 5  

-10  55  -120 130  - 7 0  1 5  

- 1  5 - 1 0  1 0 -  5 1 

'-144 900 -2400 3600 -3600 1644- 

-200 1220 -3120 4280 -3080 900 

-105  615  -1470 1770 -1065 255 

- 24 132 - 288 312 - 168  36 

- 2 10  - 20 20 - 10  2 

( 1 9 )  

3 .3  COWELL'S METHO 

As described i n  paragraph 3.1, the general equations of motion of a space vehicle  
a re 

In Cowell's method, these equations are integrated,  using numerical techniques, 
t o  obta in  the  instantaneous posi t ion and veloci ty  of the  vehicle. 
i n t eg ra t ion  using the  same techniques 85 it does f o r  the  Encke method. The RKG s t a r t i n g  
procedure (paragraph 3.2.3.3) provides the  i n i t i a l  data ,  and t h e  Nordseick method (paragraph 
3.2.3.2) is used as t he  long-term integrat ion procedure. To make the  accuracy of the  results 
of the  two methods compatible, the  Correll's method of  in tegra t ion  is performed COmPletely in 
double precis ion.  

The Program performs the 

3 - 1 7 / 3 -  18 
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t 

3.4 POWERED FLIGHT 

I 3.1). I I I I T R O O U C ' I  ION. For powered f l i g h t ,  t h e  dynamic model of t h e  vehic le ' s  t r a j ec to ry  
includes t h e  th rus t  acce le ra t ion  components as well as t he  acce lera t ions  a r i s i n g  from gravi- 
t a t ion .  drag. and rad ia t ion  pressure. In  the following development, t h e  t h r u s t  acce le ra t ion  
components are a.-=mned ava i lab le  in  the  form of a polynomial expansion with time as t h e  var i -  
able. It  is fu r the r  assumed tha t :  (a) no guidance loop is included i n  t h e  analysis, so 
t ha t  t h rus t  is independent of the. vehic le  state; (b) t h e  vehicle  has  s u f f i c i e n t  a l t i t u d e  so 

1 -  

I t h a t  drag forces  m a y  be t rea ted  as small perturbations. 

During powered f l i g h t ,  t h e  equations of motion are 

R = -  -4 i- P,  + P, i- P3 i- P, i- p5 
R 3  

i n  which 

R = pos i t ion  of vehic le  with respect to t h e  cen t r a l  body 

P, = planetary perturbation accelerat ions 

P, = obla teness  acce lera t ions  

P, = t h r u s t  acce le ra t ion  

P, = atmospheric drag accelerat ion c 

P, = rad ia t ion  pressure accelerat ion.  

In most computations involving powered f l i g h t ,  P, and P5 m a y  be neglected. 
t h e n  become 

The equations 

The computational advantages of Ebcke's method (paragraph 3.2) may be extended to  
t r a j e c t o r i e s  involving large t h r u s t  forces  i f  a suitabie n~iiiiiial tajectory car! be found. 
For the problem analyzed here, the nominal o r b i t  is computed from 

nhere P, is expressed as a polynomial expansion i n  time, i .e. ,  

k 

i = o  
P, = z ui r i  (4 )  
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A N A L Y T I C A L  BASIS 
I 

where 

- - -  
and X, y. 2 a r e  t h e  u n i t  vectors  of the coordinate system In which t h e  t h r u s t  accelerat ion is 
comuted. 

Paragraph 3 . 4 . 2  develops a power s e r i e s  f o r  t h e  nominal t r a j ec to ry  described by 
equation (3 ) .  
t i ons  of the Ekcke accelerat ions,  e ' ,  a r e  carr ied out i n  s i n g l p  precision. The summation of 
the nominal t r a j ec to ry  components and the  hhcke Fomponents a re  performed i n  double precis ion.  
To obtain double-precision expansions of R, and R, which hold over the same time in t e rva l  for  
which the t h r u s t  acceleTation polynomial is val id  would, i n  general, require a large number 
of terms i n  t h e  R, and R, power se r i e s .  I n  order  t o  overcome t h i s  d i f f i c u l t y  and t o  maintain 
h i g h  precision i n  the computations, t he  power s e r i e s  fo r  R, and R, are transformed t o  sh i f t ed  
Chebyshev polynomial expansions. 
of terns.  
transformation. 

The nominal t r a j ec to ry  is computed i n  double precision whereas the integra-  

The l a t t e r  expansions a r e  more accurate f o r  a given number 
(Refer t o  Appendix B of t h i s  manual.) Paragraph 3 . 4 . 3  develops t h i s  

Paragraph 3 . 4 . 4  develops a power s e r i e s  formulation f o r  t he  t h r u s t  accelerat ion 
(equation (4 ) ) .  

The analysis  of paragraph 3 . 4 . 2  appl ies  t o  the "forward integrat ion,  i .  e. , forward 
i n  time, of t he  equations of motlon of a vehicle i n  Dowered f l i g h t .  I t  m a y  be necessary f o r  
t h e  Program t o  integrate backwards i n  time, over an i n t e rva l  during which the vehicle was i n  
powered f l i g h t .  
integrat ion.  

Paragraph 3 .4 .5  describes the computations f o r  the case of backwards 

3.U.2 T R A J E C T O R Y  D E T E R M I N A T I O N .  Solutions t o  equation (3 )  of paragraph 3 . 4 . 1  may 
be given i n  terms of a power se r i e s ;  t h u s ,  t h e  s t a t e  vector of t h e  nominal t r a j ec to ry  may be 
wri t ten as 

and 

i i ,  = 2 is, 7 ( i -  1) 

i 

Recursion relations w i l l  be developed g i v i n g  Si i n  terms of u, .(equations ( 4 )  and (5 )  of 
paragraph 3 .4 .  1) and t h e  vehicle 's  i n i t i a l  conditions,  R, and R,. Having the  nominal t r a -  
jectory given by equations (1) and ( 2 ) ,  t h e  Encke equations of motion a r e  obtained by sub- 
t r a c t i n g  equation ( 3 )  of paragraph 3 . 4 . 1  from equation ( 2 )  of paragraph 3 . 4 . 1 :  

3 -  20 



S ~ l u t i o r !  of eqciation ( 3 )  with the  i n i t i a l  conditions 6'  = 0, e' = 0 leads to the calculat ion 
vehicle  fiosition and velocity:  

Simple recursion formulas m a y  be developed €or the  si c o e f f i c i e n t s  by considering 
the expansion of equation (1):  

rn 
i 

a i  X N  = 1 
i = O  

ffi 

Y, = Z b i  7' 

i = o  

ffi 

ZN = Z c i  r1 
i = o  

- - -  
w:ere xk, y N ,  and zIr art. the magnitudes of the X. y. Z components o f  $$, and 

5 > D i  7' = RN2 = xN2+ y, 2 t Z N ,  2 

i = o  

The c o e f f i c i e n t s  of equation ( 7 )  are obtained by def in i t ion  from eguntion ( 5 ) :  

3 - 2 1  



To evaluate  the coe f f i c i en t s  of  equation (8 ) ,  l e t  

I 3 -  22  

D 
z =  ( R N 2 )  ' 

Taking  the natural logarithm of b o t h  s ides ,  

p l n ( R N 2 )  l n ( z )  

Different ia t ing w i t h  respect t o  T 

S e t t i n g  p = -3/2, performing t h e  indicated d i f f e r e n t i a t i o n ,  and equating coe f f i c i en t s  i n  
equation (12) y i e l d s  

D i f f e ren t i a t ing  equations (5) twice: 

(10) 

(11) 

Let t h e  th rus t  acceleration polynomial of equation (4 )  of paragraph 3 . 4 . 1  be developed i n  
components so that 
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. 

where ai, pi, y, are t h e  coe f f i c i en t s  defined i n  equation (5) of  paragraph 3.4.1.  

Subs t i t u t ing  equatlons (5). (8). (15). and (16) i n t o  equation (3) of paragraph 
3.4.1,  and equating c o e f f i c i e n t s  of like powers, t h e  recursion formulae for t h e  si coe f f i -  
c i e n t s  are obtained: 

i = 0 ,  1, 3 .  _ . . .  

m: 
condi t lons.  

In equations (17) the subsc r ip t  "0" i nd ica t e s  i n i t i a l  

with these  coef f ic ien ts ,  pos i t ions  on the  reference orbi t  are obtained from 
equations (5); velocity components OD t h e  o r b i t  are given by t h e  first de r iva t ives  of xN, 
yN, and z,,: 

3- 23 
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3 . Y . 3  Let t h e  t h r u s t  
accelerat ion polynomials of equation (4) of paragraph 3 . 4 . 1  be val id  i n  t h e  range 0 5 7 5 7 M A X .  
Over t h i s  span, t h e  normalized time var iable  i s  

E X P A N S I O N  O F  R, A I D  R, I N  S H I F T E D  C H E B Y S H E V  P O L Y I O W I A L S .  

7 t = -  
7M A X  

For sh i f t ed  Chebyshev polynomials, t he  nonnalized time va r i ab le  is 

and the  t h r u s t  acceleration as a function of t '  i s  given by 

K O  * * * 
f ( t ' )  = - +  K I T 1  ( t ' )  t K 2 T 2  ( t ' )  -t . . .  -t K,T, ( t ' )  -t . . . ,  

2 
( 3 )  

Calculation of the K ,  given the power s e r i e s  c o e f f i c i e n t s  of f ( t ' )  has  been described i n  
Appendix B. The p e r t i n e n t  equations, however, a r e  summarized here i n  a consis tent  notation. 
Rearranging equations ( 5 )  of paragraph 3 . 4 . 2  i n  t e r n s  of t h e  normalized va r i ab le  t :  

3 -  24  

m ', 
Y N  = b ' i ( t ) i  

i = o  

m 
ZN = z C ' , ( t , '  

1 = 0  



. 
so that 
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Similarly for the velocity component expansions of equations (19) of Paragraph 3.4.2: 

Let Pi stand for any of the coefficients a;, b;. c;; then, 

Tk-1 remaining coefficients are obtained from 

Where 

OD 

K, = 2 C,C,,(~P)P~~, i f  r is even 
9' 1 

(9) 

(10) 
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- ( 2 q ) ( 2 q -  2 ) ( 2 S -  4 )  . . .  ( 2 Q -  r + 2 )  , r even - 
c r  ( 2 s  t 2 )  ( 2 q  + 4 )  ( 2 9  + 6 ) .  . . ( 2 s  + r )  

3 . Y .  Y THRUST A C C E L E R A T I O N  POWER S E R l  E S  F O R M U L A T I O N .  A t  a l t i t u d e s  well above t h e  
dense port ion o f  t h e  atmosphere, rocket t h r u s t  may be expressed i n  terms of parameters which 
are independent of a l t i t u d e .  In general ,  t he  t h r u s t  force is some function o f  time: 

Mass rate is generally constant,  so t h a t  t h e  instantaneous mass may be described by 

(2) 
- m - m ,  + i,t. 

With these assumptions, t h e  th rus t  accelerat ion is given by 

In the development presented i n  paragraph 3 .4 .2 ,  it was assumed t h a t  P, was representable  as 
a polynomial expansion i n  time. 
accelerat ion and force,  respectively.  If (P ) can be given as a power series i n  time, then 

Let (P3)t  and G t  ( t) be t h e  magnitudes of t h e  6-components of 

3 6  
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To obtain the general forldlation of eqPstioa ( 7 ) .  write the ratio of equation (4): 

I .  

Taking natural logarithm 

Differentiating equation (Q) 

Multiplying through by G e t ,  

Since D(t) = 1 + k t ,  b - k and all higher derivatives of D ( t )  are zero. 
equation (11) becomes 

Consequently, 

The pth derivative of equation (12) i 8  readily seen to be 

Evaluating equation (13) at t = 0, 

Hence, the Pth coefficient as given by equation ( 7 )  is 
I 
I -  

- 
6 P -  PI 

(14) 
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3 .  Y .  5 B A C K W A R D  I MTEQRAT I OM DUR I N e  POWERED F L  I QHT. To compute pawered f l i g h t  
nominal t r a j e c t o r y  i n  the f o n a r d  d i rec t ion ,  t h e  following quan t i t i e s  are required: 

h R,- i n i t i d  posi t ion vector 

b. R o -  initial ve loc i ty  vec tor  

c. 

d. tb-  start of bum 

e. t i -  end of burn 

ul - coe f f i c i en t s  of t h r u s t  accelerat ion polynomial 

In t h e  backward integrat ion mode. the  following q u a n t i t i e s  are available:  

a. R, - terminal posi t ion vector 

b. 

c. 

d. 

e. 

4 - terminal ve loc i ty  vector 

ul - best estimate of t h r u s t  accelerat ion c o e f f i c i e n t s  

tb  - best estimate of start of bum 

ti - best estimate of end of burn 

The equations of motion to be salved a r e  the  same i n  e i t h e r  mode: 

nJ 

%8 

* 

I n  the  backward mode, however, the  series so lu t ions  t o  equations (1) become 

Thrust acceleration is given by 

1-0 

n J i  
N 

T =  Z u 1 7  
1’0 ‘ 
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. 
Expanding the function about 7- 

The ull m a y  be derived from the  by means of the relation 

where 

T e coefficients SI: m a y  be cogtlted fm the coefficients of equation (6) and the terminal 
conditione, 4 and & 
To make this conversion, the time pumetem mst be defined. 

These si' a m  than converted to Chebyahev polynmial coefficients. 

In teras of t h e  variable t, e~aations (2) and (3) become 

l = o  

1-0 
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For conversion t o  Chebyshev coeificienta, the s i f  are nonalized by 

The time variable corresponding to t h i s  nomalization l i e s  i n  the range 

- 1  L t '  5 0  

whereas the Chebyshev time variable has the range 

3 - 3 0  

( 1 2 )  
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3.5 REFERENCE BODY TRANSFER 

3 . 5 .  I IWTRODUCTIOW. When severa l  cen t ra l  bodies are t o  be used i n  t r a j ec to ry  
computation, c r i t e r i a  are necessary f o r  determining when one cen t r a l  body is t o  be taken as 
t h e  coordinate o r ig in  i n  preference t o  another. 
"regions of influence" surrounding the  p lane ts  i n  a he l iocent r ic  system. o r  surrounding a 
satel l i te  i n  a planetocentric system. 
f o r  computing regions of influence, and evaluate  t h e  expression for both t h e  solar system 
and t h e  earth-moon system. 

The most c m o n  criteria are based on 

The following paragraphs de r ive  a general expression 

The only transformation involved i n  changing reference bodies is a t r ans l a t ion  of  
t h e  reference frame from one o r ig in  t o  another. 
defined by t h e  base date system: 
with t h e  pos i t i ve  x-direct ion spec i f ied  by t h e  equinox of base date. 

The d i r ec t ions  of t h e  coordinate axes are 
t h e  x- and y-axes l i e  i n  the  mean equator of base date ,  

To r e f e r  v e l o c i t i e s  from one reference system t o  another. t h e  r e l a t i v e  v e l o c i t i e s  
between the  new and the  old reference bodies must be knom. Components of t h i s  ve loc i ty  are 
obtained by t h e  evaluation of polynomials which have been f i t ted t o  ephemeris data. 

3 . 5 . 2  THE RE61OM OF IWFLUEICE. Reference 3 def ines  an "ac t iv i ty  spheYe" as follows: 

"Activity sphere: t h e  region within which t h e  planet  (or moon) r a t h e r  
than t h e  sun (or  p lane t )  should be regarded as t h e  cen te r  body f o r  t h e  
o r b i t  o f  a body moving a t  hyperbolic speed1 i n  t h e  p l ane t ' s  gravi ta-  
t i ona l  f ie ld .  Within t h e  limits of t h i s  sphere,. . . t h e  r a t i o  of center  
force  to per turbat ive force is greater i n  t h e  p lane tocent r ic  coordinate 
system than i n  the  he l iocen t r i c  coordinate system." 

The region of influence based on t h i s  d e f i n i t i o n  is not  t r u l y  spherical ;  however, 
i n  most cases  it is unnecessary t o  compensate for t h e  small f l a t t e n i n g  and bulging of  t he  
actual region. Therefore, a spher ica l  shape 
m a y  be assumed, except i n  e a r t h - m n  space. 
A general expression is now derived f o r  t he  
earth-moon system following t h e  development 
of  re ference  4. Simplifying approximations 
are t h e n  applied t o  make t h i s  expression 
s u i t a b l e  f o r  he l iocen t r i c  space. 

From t h e  geometry shorn i n  figure 
3.5- 1, t h e  g rav i t a t iona l  accelerat ion,  Per 
u n i t  mass, of t h e  vehicle  is seen t o  be 

(1) 
PE RE 

aE = -- 
R E  

' A t  a speed equal t o  or greater than the 
escape reloci tg. 

F i g u r e  3 . 5 - 1 .  V e h i c l e  I n  
Earth-Moon Space 

3 - 3 !  
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from the Earth, and 

P M R M  
a M =  -- 

, 'M3 

from the moon. The gravitational acceleration of the moon because of the Earth is 

- P E  auE - - - 
R 3  ' 

whereas the acceleration of the earth because of the moon is 

- PM aEw - -- . 
R 3  

(3)  

(4 )  

Only the magnitudes of the above accelerations are employed in computing the sphere of 
influence. 
position to the earth-moon line. This restriction is not serious since the angle subtended 
at the Earth by the sphere of influence is in the order of 10 degrees. Using the afore- 
mentioned definition for the activity sphere, the defining equation for this region becomes 

The use of magnitudes rather than total vectors essentially restricts the vehicle 

I 

'E - 'YE - 'Y - aEyl 
( 5  1 - 

a M  aE 

Rearranging equation (6) 

Along the earth-moon line, 

Ry = R - RE 
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TRAJECTORY DETEWINATION 

so t h a t  Ry is pos i t i ve  when t h e  vehicle  is in  f r o n t  of t h e  moon and negative when it is 
behind. Subs t i tu t ing  equation ( 8 )  i n t o  equation (7): 

Let 

Then 

Equation (12) is also applicable t o  a he l iocent r ic  system: i n  t h a t  Instance. 

wiiere 

d i d  

xhere 

Rp = dis tance  from t h e  vehic le  t o  t h e  p lane t  

Re I dis tance  from t h e  p lane t  t o  the Sun 

RAm is rad ius  of a c t i v i t y  sphere 

K is i n  t h i s  case /+,Ips 

W>an values  f o r  R- may be used for a l l  the  p lane ts  of t h e  solar system. 

For t h e  earth-moon system, equation (12) may be solved f o r  t h e  r a d i u s  of t h e  
a c t i v i t y  sphere. I n  t h i s  case, however, consideration must be given t o  the fact t h a t ,  
because of t h e  proximity of the  Earth. t he  lunar  region of inf luence is not quite spherical .  
On t h e  s i d e  of the  moon closest to t h e  Earth, t h e  radius  of t h e  region o f  influence is 
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where 
- r, - minimum value of  r, i. e . ,  when RM = R - R E  is pos i t ive  

The maximum radius  is obtained when 

- R M  - R E  - R 

is  posi t ive.  Under t h i s  condi t ion,  equation (12) becomes 

Expanding t h e  f i f t h  roots by t h e  binomial theorem, and r e t a in ing  terms up t o  second order: 

1/ 5 
1 

(0.1 r m 2  t 0.3 rm t 1) (17) 

Subs t i tu t ing  equations (17) and (18) i n t o  equations (14) and (16), respect ively,  and r e t a in -  
terms up t o  the  second order: 

0 . 2 8 r m 2  t (1 + 0 . 7 6 ) r ,  - e = o (19) 

where 

Then 

(21) 
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TBAJBCTORY St TGUIIN ATION 

The moon's region o f  influence may conveniently be described by an e l l i p s o i d  having 
one focus at  the  moon. Computing t h e  ellipsaid's major axis:  

The e l l ipso id ' s  eccent r ic i ty  is obtained from 

R r ,  = a(1  - e )  

o r  

The ell ipsoid's  minor axis is given by 

2b  = 2 a m  

- - -  
For the  x, y. z coordinate system of figure 3.5-2. t h e  cen 
O) ,  where 

er a the  e l l ipso 

The quant i ty  R. the  earth-soon dis tance,  is ac tua l ly  a function of time, so t ha t  the figure 
of the  eii ipsoid changes vtth time. It is customary t e  assign t h i s  mantity a value cbrre- 
sponding t o  t h e  mean lunar  o r b i t a l  radius. 

Reference body t r a n s f e r  c r i t e r i a  i n  earth-soon space is detemined by vehicle  
pos i t ion  wi th  respect t o  the  a c t i v i t y  e l l i p s o i d ,  the equation f o r  which is 

b2  b2  
(28) 
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/ X Y 2 ARE INERTIAL COORDINATE SYSTEM AXES 
$,$ f ARE UNIT VECTORS OF LUNAR REFERENCE SYSTEM 

F i g u r e  3 . 5 -  2 .  I n e r t i a l  and Lunar R e f e r e n c e  Frames 

The vector Re  i s  the  vehicle posit ion w i t h  respect t o  the moon specif ied In a coordinate 
system i n  which the x-axis is directed along the  earth-moon l i n e  from the moon to  the  Earth, 
and i n  which t h e  z-axis  is determined by the angular momentum vector of the  earth-moon SYS- 
tern. I f  R is lunar posit ion w i t h  respect t o  the Earth and V is luna r  o r b i t a l  veloci ty ,  both 
as  obtained from the ephemeris, t hen  the u n i t  vectors  of the lunar coordinate system ( f i g u r e  
3.5-2) are:  

(29) 
- R 
x e =  -;r 

- R x V  
I R  x V I  

Le = 
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TBUECTOBY DETEUINATION 

Let 51 be vehicle  pos i t ion  with respect to the moon i n  base date i n e r t i a l  coordinates. Then, 

- 
Z, - R, Z, 

The subs t i t u t ion  o f  these values in to  equation (28) peraits t h e  development of the  following 
criteria: 

(33) 
a2 b2 b2  

If  E > 1, vehic le  is outs ide  ell ipsoid o f  influence. 
If Z = 1. vehic le  is on ell ipsoid of influence. 
I f  5 < 1, vehicle  is i n s ide  ellipsoid of  influence. 

Methods f o r  employing these criteria are discussed i n  paragraph 3.5.4.  

3 .5 .3  EQUATlOlrS OF TRANSFER. Tbe t r ans fe r  equations are simple t ransfomations.  Por 
pos i t ion  t r a n s f e r  from body 1 t o  body 2: 

R, = R, - R (34) 

where 

R = pos i t ion  of second body w i t h  respect t o  t h e  first 

R, = vehicle  posi t ion with respect to  first body 

R2 = vehic le  posi t ion with respect to  second body 

R, R,, and R, are spec i f ied  in  t h e  base date  i n e r t i a l  coordinate system. 

For ve loc i ty  t r a n s f e r  f r o m  body 1 t o  body 2: 

I -  

R, = Rl - R 

where 

R veloc i ty  of second body w i t h  respect to  t h e  first 
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ANALYTICAL B A S I S  

Planet  

Venus 
Earth 
Mars 
J u p i t e r  
Saturn 

R, = vehicle ve loc i ty  w i t h  respect t o  first body 

R, vehicle ve loc i ty  w i t h  respect t o  second body 

RAm ( I n  Astronomical Units) 

0.003586 
0.005384 
0.003364 
0.176967 
0.317538 

3 . 5 . 4  APPLICATION OF TRANSFER CRITERIA 

3 . 5 . 4 .  I The a c t i v i t y  radii, RAm, f o r  t h e  solar system p lane t s  
considered i n  t h i s  program are l i s t e d  i n  table 3.5-1. 
t i o n  (13) o f  paragraph 3.5.2. The veh ic l e ' s  d i s tance  from each of  these p lane t s  is computed, 
and t h e  dis tances  compared with t h e  associated a c t i v i t y  radii. I f  t h e  vehicle  is outs ide  of 
t h e  spheres of influence of a l l  of t h e  p lane ts ,  t h e  Sun is used as t h e  reference body. 

He1 i o c e n t r i c  System. 
The values  were computed using equa- 

Table 3.5-1. Activity Radii for  Planets 
o f  the Solar System 

Calculating the  elements of t h e  e l l i p s o i d  g ives  rise t o  t h e  list i n  table 3.5-2. 

Since a and b are near ly  equal ,  t h e  moon's region of inf luence  m a y  a l so  be taken 
as spherical with 

a = b = 9 . 1 2  E. R. = R A C T .  

The displacement of  the center  of  t h e  region of inf luence from t h e  moon's cen ter ,  xo, 1s 
near ly  4000 miles, s u f f i c i e n t l y  s i g n i f i c a n t  t o  be r e t a ined  i n  pos i t ion ing  t h e  sphere. 
Equation (33) of paragraph 3.5.2 therefore  can be r ewr i t t en  as 

.. 
a z  

3 - 3 8  



I .  
I .  

. 

T a b l e  3.5-2. Lunar Region of Influence 
E l  1 ipro id  Parameters 

e = 0.150 

Normnlized Distances I r, = 0.135 
ry = 0.167 
a = 0.151 
b 0.150 J 
e = 0.108 
R = 60.39 E.R. 
x,, = 0.966 E.R. 

3-39/3-10 



SECTION 4 

PERTURBATIONS 

4. I InTROWCTlOn 

This sec t ion  develops expressions for t h e  c a p o n e n t s  of vehic le  acce lera t ion  due t o  
planetary a t t r ac t ions ;  oblateness of t h e  Earth and Yloon; t h e  following per turbing influences: 

atmospheric drag; solar rad ia t ioa  pressure. Where necessary, descr ip t ions  are provided of 
t h e  general methods used by t he  Program t o  implement these expressions. 

4.2 PLANETARY ATTRACTIONS 

The general  expression for the perturbat ion acce lera t ion ,  P,, of a space vehic le  
due t o  t h e  g rav i t a t iona l  inf luence of t h e  Son, Moon. and p lane t s  (excluding the reference 
body) is given by (refer to  Section 3) 

where 

VEHICLE 

G = grav i t a t iona l  constant 

Yj = mass of jth body 

R,, = pos i t i on  of  vehic le  with 
respect to the j t h   bod^ 
( f i g u r e  4.2- l j  

R, = pos i t i on  of reference body 
with respect to the jth 
body 

If t h e  tro terms of  t he  bracketed expres- 
s ion  i n  equation (1) are nearly equal, the 

REFE~ENCE 
BODY 

Figure 4.2-1. Planetary Attraction 
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IMALYTICAL BASIS 

indicated subtract ion w i l l  r e s u l t  i n  a l o s s  of accuracy due t o  round-off errors introduced by 
machine computations. Bat t in  (reference 5) has rewr i t ten  equation (1) i n  a form which elim- 
i n a t e s  the  problem: 

where 

u[3  + U ( 3  + V I 1  

1 +  ( 1  + U)3’2 
f ( U )  = 

A R  = hj - R,, 

4.3 OBLATENESS 

Y . 3 .  I 
of t h e  Earth and  t h e  Moon. 
turbat ion accelerat ion due t o  t h e  Earth’ s oblateness .  
discussion f o r  the Moon. 

Q E N E R A L .  The Program t akes  i n t o  consideration per turba t ions  due t o  t h e  obla teness  
Paragraph 4.3.2 provides a der iva t ion  of a space vehicle’s per- 

Paragraph 4.3.3 provides a similar 

NOTE: The notation used throughout t h e  discussion i n  paragraph 
4.3.2 is cons is ten t  with t h a t  used by Kaula and Kozai with t h e  
exception of the sign of the  po ten t i a l .  

Y .  3.2 E A R T H ’ S  O B L A T E N E S S .  Consider a ponderable body having 8n a r b i t r a r y  f igu re  and 
an arbitrary mass d i s t r ibu t ion  as shown i n  figure 4.3-1. The cont r ibu t ion  of t h e  mass ele- 
ment dm t o  t h e  poten t ia l  a t  point  P is given by 

- 1 / 2  
dU = -Gdm[r2 - 2Rr cos  y t R2]  

where 

dU = d i f f e ren t i a l  po ten t ia l  
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. PEBTUII)ATIONS 

P 

X / 
Figu e 4.3-1. Calculation of P o t e n  

d. = d i f f e r e n t i a l  mass element 

ial 

Y 
T 

r = distance from center of coordinates to point at which dU is computed 

R = distance from center of coordinates to mass element rh 

y * angle between the vectors  r and R 

A r = magnitude of the  vector difference o f  r - R 

Equation (2) m a y  be refonoulated by expanding the bracketed terms i n  a Legendre series in 
(R/r)  : 
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i n  which P,(cos y)  is t h e  nth order Legendre polynomial. 
(R, 8,, A,) and (r, 8, 1) represent  t he  pos i t ions  of t he  mass element and the  point  of i n t e r -  
es t ,  respectively.  
angles A, and A are t h e i r  longitudes. 

In spherical  coordinates,  l e t  

The angles 6, and 8 are co- la t i tudes  of  t h e  two points ,  whereas the 
I 

It can be shown t h a t  

(4) C O S  y = cos  0" c o s  8 t s i n  0, s i n  B ( c o s  A M  COS X + s i n  A, s i n  A )  

I The Legendre polynomials can nor be expressed i n  terns of t h e  associated spherical  harmonics 
Pnm(r) : 

where 

a. = 2 when m = 0 

am = 1 when m # 0 

Ehbst i tut ion of  equations (5) and (6) i n t o  equation (3) y ie lds  an expression for dU i n  terms 
of tesseral harmonics. Integrat ing t h i s  expression over  a l l  mass elements i n  t h e  ponderable 
body gives t h e  poten t ia l  at  point  P (figure 4.3-1):  

where 

Ro is the mean equator ia l  radius  of t he  ponderable body 

Rt, Cn,m and S,,' incorporate t h e  r e s u l t s  of t h e  in tegra t ion  

p is the l a t i t u d e  o f  P above t h e  equator ia l  plane. 

In t h e  preceding general  fonnulation, t h e  range of t h e  ind ices  (m, n) is 
unrestr ic ted.  For Practical computational purposes, however, t h e  following limits on t h e  
range are employed: 
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Range of Indices (m,n) 

n - m - 
0.1.2 
0.1.2.3 
0.1,2,3.4 
0.1,2.3 
0.1,2 
0 . 1  
0 
0 
0 

2 
3 
4 
5 
6 
7 
8 
9 
10 

The fundamental term is given by the 0.0 combination. Zonal hannonics (which 
indicate the variation of the expression with latitude) are obtained from combinations in 
which m = 0, while sectorial harmonics (which indicate the variation of the expression with 
longitude) arise when m = n; the remaining combinations are truly "tesseral" or "square" in 
that the function 

sin mh 

cos mX 
P,.(sin PI 

vanishes both along a number (n-m) of parallels of latitude and a number (2m) of meridians of 
longitude. Figure 4.3-2 provides an illustration of zonal. sectorial, and tesseral harmonic 
variations for a sample set. 

ZONAL SECTORIAL T E SSERAL 
HARMONIC HARMONIC HARMON I C 

FOR FOR FOR 
n : 4  n = 3  n = 8  
m:O m 23 m -3 

Figure 4.3-2. Sample Spherical Harmonics 
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With the coordinate system defined as  follows, equation (7) describes the Ea r th ' s  
g rav i t a t iona l  potent ia l  a t  any point i n  space: 

( a )  

(b) 

The center of coordinates is the  E a r t h ' s  center  of mass. 

The x-y plane is the  t r u e  equatorial  plane of date. 
through the Greenwich meridian. 

The 5-axis is the  Earth 's  s p i n  axis. 

The )c-axis passes 

(c) 

With these def ini t ions,  equation (7) describes the E a r t h ' s  gravi ta t ional  potent ia l  
a t  any p o i n t  i n  space; the gradient of t h i s  potent ia l  gives the corresponding force f i e ld .  
The force f i e l d ,  however, is described w i t h  respect t o  a moving coordinate system; i f  the 
f i e l d  is t o  be employed i n  t r a j ec to ry  computation, it must  be transfonned t o  an i n e r t i a l  base 
date  coordinate frame. 

The components of gravi ta t ional  accelerat ion w i l l  now be expressed by a general 
recursive formulation val id  for  any n ,  m combination. F i r s t ,  it is necessary t o  develop 
expansions f o r  cos m i  and s i n  mh i n  terms of cos and s i n  A. Let 

Then, 

Expanding (a + jpjm = (cos A t j s i n  
imaginary parts i n  equation (9 ) :  

by the binomial theorem, and equating r e a l  and 

k =  0 

where 

ml 
r!(m - r)! 

c =  

i f  m is even 

i f  m is odd 
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I - -  

I - -  

p' (a) 

- -  1 
- - (lr I if is even 

I if is odd 

(14) 

Ihe definition of equations (13) and (10 maintain positive exponents for equations (10) and 
(11). 

Ron the definition of spherical coordinates: 

sin p = -  

cos /3 cos x = -  
r 

Y 
cos /3 sin h = - :I r 

Multiplying and dividing equations (10) and (11) by cosmfi, and using equations (IS), 

Substituting equations (16) and (17) into equation (71, 
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For given values of m and n, 

From the definition of Legendre coefficients, 

1 Pnm(sin p> d m  t n 

co smp 2%! d7m 
(72- 1)" - - - -  

r = sin p 

Upon substitution of equation (21) into equation (20), 

-mo" dm + n - - ( r 2  - l)"*G(x,y) 
dr" t n 

'n, 2nn1rn + m + 1 

(21) 

(22) 

Gravitational acceleration is computed by taking the gradient of the potential 
function of equation (22). 
to 6, where 6 takes on the values of x, y, and z. 
&component of acceleration will be designated by AEn,,, and 

The general derivative in the gradient will be taken with respect 
Consequently, the magnitude of the 

With these definitions, 

Carrying out the indicated operations, 
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PEBTUUAtIONS 

and 

-- 
- I  

Prom Rodrigues' formula 

where P(n) is the integral part of (n-m)/2. 
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In  addi t ion,  

Subs t i tu t ing  equations (28) and (29) into.equat ion (25), combining tenas, and changing the  
sign i n  accordance with the  usual convention: 

s ince  

Tables 4.3-1 and 4.3-2 list the  appropriate values  of c o e f f i c i e n t s  Cn,, and Snjn,., 
respect ively,  t o  relate equation (31) t o  the  Esrth' s grav i t a t iona l  f i e l d .  The values  l i s t e d  
are f o r  t h e  range of n and n suggested earlier. Note t h a t  values are not  supDlied in tables 
4.3-1 and 4.3-2 for the  fundamental (n - m - 0) term of t h e  An,. expansion. The fUdMenta1  
term represents  the vehic le ' s  acce le ra t ion  due t o  a spher ica l  Earth, while t h e  o the r  terms 
account f o r  t he  Earth's oblateness. Thus, 

where (P2)E is the vehic le ' s  perturbation acce lera t ion  due t o  the  Ear th ' s  oblateness .  

Y.3 .8  
Moon's g rav i ta t iona l  f i e l d  is given by 

M O O N ' S  OBLATENESS.  The po ten t i a l ,  UY, a t  a poin t  P ( f igu re  4.3-3) due to  t h e  

1 
U Y  = -  I Gdm 

Y IR, - T I  

where 

dm is a d i f f e r e n t i a l  element of  lunar mass 

G is the grav i ta t iona l  constant  
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ANALYTICAL B A S I S  

R ,  is t h e  se lenocent r ic  posi t ion of the  vehicle  

r is the  selenocentr ic  posi t ion o f  dm 

M is t h e  mass of t h e  Moon 

Rewriting equation ( l ) ,  

- 1 / 2  

Considering the bracketed expression of equation (2)  t o  be o f  t h e  fonn (1 + where 

,2 2r*Ru 
(3 )  a =- - -  

R Y 2  RY2 

equation (2 )  i s  rewri t ten,  using a binomial expansion, as 

Figure 4 . 3 - 3 .  Lunar Potential 

4 -  12 

The quant i ty  

3 I 2% 
- I  - 

2 

can be rewr i t ten  as 

RM 
2 

where [rr] is a dyadic of order  1. There- 
fore, neglec t ing  all  tenns i n  equation (4 )  
of an order  h i g h e r  t h a n  t h a t  shown i n  t h e  
equation, 



Over the e n t i r e  mss of t h e  #on, 

Therefore, 

1 2 -k[ y - - 1 - r 'do - 3RM I - I rrl do*RM 
M 2  

%I2 % RM 2 M  

Equation ( 7 )  can be rewr i t ten  as 

where [I1 is a u n i t  dyadic. 

Let 

Therefore, 

The quant i ty  [VJ represents  the lunar oblateness dyadic. 
of vehic le  pos i t ion ,  
p r inc ipa l  axis coordinate system (s. 

This dyadic, which is independent 
be wri t ten 118 ; o l l o ~  i n  t e n s  of lunar  constants  i n  t he  lunar  

yM. Ly) defined in Appendix A to t h i s  manual: 

2C-A-B 

0 

l V M 3  = 0 2B-A-C 

Y [" 0 

(11) 
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where 
- 

A = principal moment of i n e r t i a  on xY = JM(y2 + z2)clm 

B = principal moment of i n e r t i a  on y, = I u ( X 2  + Z2)dm 

c principal moment of i n e r t i a  on < = JU(x2 + ~2)cim 

- 

Reference 6 gives the following values f o r  A, B, and C: 

A = 0.88746 x lo2’ kg - km2 

B = 0.88764 x lo2’ kg - km2 

C = 0.88801 x lo2’ kg - km2 

I n  these units, 

r7. 0 0 1  

- 9 . 2  O 1 kg-km2 l o  0 

[vu] = 0 1.9 

The vehicle’s acceleration due t o  the Moon’s oblateness is given by t h e  gradient of the 
oblateness t e r n  of equation (10): 

R,. [Vu] R, 

(12) 

(13) 

1 

Now, 

Since 
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L O  0 

= 2[VMl R, 

where is writ ten i n  the  coordinate system f o r  which [VJ is a diagonal dyadic. 

Therefore, 

- 5 P  P - -- - R,[R, [V,I RBI + -s ( V,I R, (P,) 
M 2 7  RM RM 

(19) 

I n  the trajectory ca lcu la t ions  of the Program. 4 is given i n  the base date 
(%, &,. 3) system. This 
may be done by a coaposite transformation composed of precession, nutat ion,  and l ib ra t ion .  
Thus * 

It is therefore necessary t o  t r a n s f o m  [v,,l, i n t o  t ha t  system. 

where [ A I ,  [ N l  , and [L] are given i n  Appendix A. 

It should be noted t h a t  the lunar  oblateness  perturbation accelerrtlaa. (P1)y, is 
appreciable only if I$, is less than 40.000 km. 
lunar  oblateness  per turbat ion accelerat ion may be assumed to be zero. 

For values of 51 greater than tbis value, t he  
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4. 4 ATMOSPHER I C  DRAG 

PEPTUB13 AT1 ON S 

4. Y. I 
o r  space probe requires  considerat ion of vehicle decelerat ion r e s u l t i n g  from atmospheric 
drag. A t  t h e  Present  time. there  is evidence t h a t  Mars, Venus, Jup i t e r ,  as well as t h e  Earth 
have sufficiently dense atmospheres to  retard t h e  motion of a space vehicle. 

I N T R O D U C T I O N .  Accurate simulation of the  t r a j e c t o r y  of an a r t i f i c i a l  sa te l l i te  

The following paragraphs describe t h e  general equations used f o r  drag computations, 
some of t h e  problems involved i n  simulating planetary atmospheres, and the  e f f e c t s ,  on t h e  
simulation, of making c e r t a i n  s implifying assumptions. The concluding paragraphs descr ibe 
a method of  s imulat ing atmospheric drag representing a complexity commensurate with t h e  
state -of -the-art .  

An ana lys i s  of  t h e  e f f e c t s  of  atmospheric drag must take into account t h e  mission 
of t h e  vehicle.  There are t h r e e  missions i n  which atmospheric drag could play an important 
par t .  The f i r s t  mission is a low-eccentricity o r b i t  about the Earth or another planet.  The 
second mission is planetary re-entry. and the  t h i r d  is a fly-by o r b i t  (pass around a planet  
or moon) of t h e  space vehicle.  In t h e  following discussion, t h e  three  cases w i l l  be 
re fer red  to  as the  "orbit ing",  "reentry" and "f ly-by" cases. 

V . Y . 2  DRAG E Q U A T I O N S  

4.4.2. I 
vehic le  decelerat ion,  Pq, r e s u l t i n g  from atmospheric drag depends on t h e  diffuseness  of the 
atmosphere. 
v a l i d .  t h e  following equation is commonly used: 

General .  The f o w  of t h e  equation used t o  compute the  magnitude of t h e  

For r e l a t i v e l y  dense atmospheres where the  assumption of continuum flow is 

PI = - 1 {pva2cDs) 
2m 

where 

p is the densi ty  of t he  atmosphere a t  t h e  vehicle  

va is the  magnitude of  t h e  veloci ty  of t h e  vehic le  with respect  t o  t h e  atmosphere 

CD is t h e  drag c o e f f i c i e n t  of  t h e  vehic le  

S is t h e  e f f e c t i v e  surface area presented by t h e  vehicle  

m is the mass of  the vehicle  

As t h e  atmosphere becomes more and more d i f f u s e ,  t he  mean f r e e  path (average 
d is tance  between impacts of  a i r  molecules) increases.  
7 ,  shows mean f r e e  path plot ted as a function of  a l t i t ude .  
g r e a t e r  than the  diameter of the vehicle,  t he  c o l l i s i o n s  become two-body c o l l i s i o n s  and the 
assumption o f  cont inui ty  of  t he  air  mass (continuum flow) is no longer applicable.  
assumption of  a d i f f u s e  atmosphere, where a l l  c o l l i s i o n s  are two-body and t h e  mean-free-path 
exceeds t h e  dimension of the vehicle passing through. is ca l led  f r e e  molecular flow. 

Figure 4.4-1, obtained from reference 
When the  mean f r e e  path becomes 

The 
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I S 0  

Figure 4.4-1. Variation of Mean Free Length kith Geocentric Altitude 

Ketchum (reference 8 ) has derived, using the Maxwell-Boltzman Distribution L a w ,  
the following formula for the magnitude of the drag deceleration i n  free molecular flow: 

where 

R i s  the radius of the vehicle 

h is the mean free path 

Ca, is the average velocity of particles i n  the medium 
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Ketchum is uncer ta in  
A more correct equation lnay be 

as to  the  va l id i ty  of  t h e  (1 + 2R/h) tern i n  equation (2). 

This program uses  t h e  latter equation. Prom figure 4.4-1. it is seen t h a t  A va r i e s  very 
rap id ly  with a l t i t u d e  so t h a t  t h e  change from 2R = h (where the  t r a n s i t i o n  from continuum 
flow occurs) t o  2R = 0.1 A (where t h e  correct ion becomes negl ig ib le )  takes  a shor t  time. 

4 . 8 . 2 . 2  D i r e c t i o n  o f  D r a g  F o r c e .  By def in i t i on ,  t h e  drag force acts i n  a d i r ec t ion  
opposite t o  t h a t  of t h e  veh ic l e ' s  ve loc i ty  with respect t o  t h e  a i r  m a s s ,  v,. 
4.4.2.5 describes t h e  computation Of v,. 
normalizing t h i s  vector. 

Paragraph 
The d i r ec t ion  of t h e  drag force is obtained by 

4.4.2.3 V e h i c l e  Mass. I n  the  most general case, t h e  vehicle  mass terms i n  the  drag  
equations must be considered as var iab le  w i t h  time. 
a step change i n  m a s s  representing the separat ion of a landing craft  is conceivable. 
long-term steady-state m a s s  flow rate, however, would probably be small. 

In t h e  o rb i t i ng  case o r  t h e  fly-by case, 
A 

For the  reent ry  case, i f  t h e  reentry vehicle  is of t h e  heat-sink type, t h e  mass 
would be constant. For an ab la t ive  nose cone ( i . e . ,  one which loses ,  due t o  f r i c t i o n ,  m a s s  
when moving at  high speeds). t h e  m a s s  flow rate is a function of t h e  drag. For bal l is t ic  
missile appl icat ions.  t h i s  mass change is usually ignored. In any event, such changes i n  
mass represent  a small e r r o r  i n  the  locat ion of t h e  impact point. 

4. Y .  2. Y S u r f a c e  Area. The e f f ec t ive  sur face  area t e rn  S, i n  t h e  drag equation is not 
simply t h e  cross-sect ional  area of the  vehicle. 
produces a shock wave which s k i r t s  the  missile thereby placing the  e f f ec t ive  c ross -sec t iona l  
area at a poin t  somewhat close t o  t h e  nose. Since the  shock wave changes with a i r  speed, so 
does t h e  e f f ec t ive  cross-sect ional  area. 
with speed is included i n  the  coe f f i c i en t  of drag. 

The vehicle ,  i n  passing through t h e  air, 

In practice, S is made constant and any var i a t ion  

NOTE: The preceding discussion assumes t h a t  t h e  angle of attack 
of t h e  vehic le  is zero, i .e . ,  t h a t  t h e  vehicle  ve loc i ty  r e l a t i v e  
t o  the  air  mass is i n  l i n e  with the  vehicle  longi tudinal  -is. 

Y .  Y .  2 . 5  
i n e r t i a l  coordinate system. 
i n  t h e  same coordinate system, is obtained by subt rac t ing  the ve loc i ty  of the  a i r  mass from 
t h e  vehic le  veloci ty .  A good first approximation t o  
t h e  ve loc i ty  of the  air  mass is obtained by assuming the  a i r  mass to be r i g i d l y  attached to 
t h e  r o t a t i n g  planet .  

A i  r Speed. me veloc i ty  of the vehicle  is computationally ava i lab le  i n  an 
The vehic le  veloci ty  with respect t o  t h e  moving air mass. V,. 

The a i r  speed is the magnitude of v,. 

A better approximation could be obtained by including t h e  effects of  r ind  velocity. 
The pure ly  local effects have t o  be neglected, but t he  long-term horizontal  e f f e c t s  are 
known as a funct ion both of pos i t i on  on t h e  E a r t h ' s  surface and of a l t i tude .  The effects of 
t h e  wind ve loc i ty ' s  d i r ec t ion  (independent of a l t i t u d e  but dependent on l a t i t u d e  and longitude) 
and aegnitude (s t rongly dependent on a l t i t ude ,  less strongly on l a t i t ude ,  and least on 
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longi tude)  would have t o  be included. 
1500 feet a t  impact for a typical ICBM mission. I t  should be noted t h a t  winds are of 
importance only i n  t h e  E a r t h ' s  lower atmosphere, mainly for the reent ry  case. 

The e r r o r  made by neglect ing Earth winds is about 

4.4.2.6 
constant ,  but a much more accura te  representation is obtained by considering it to  be a 
funct ion of Mach number, where t h e  Mach number is defined as a i r  speed (paragraph 4.4 .2 .5 )  
divided by the  speed of sound. 

Drag C o e f f i c i e n t .  The drag coe f f i c i en t ,  CD, is sometimes considered to  be 

The speed of sound is a function of a l t i t u d e  but is eas i ly  computed, from a s tored  
t a b l e ,  using a table look-up procedure. Linear in te rpola t ion  is used between tabulated 
values. A d i f f e ren t  table is required for each planet. 

I t  should be noted t h a t  as a l t i t u d e  increases ,  t h e  atmosphere becomes rarified t o  
t h e  poin t  tha t  the  speed of  sound loses  its phys ica l  s ignif icance.  

In  Practice, C,, is tabulated for about 25 d i f f e r e n t  Mach numbers. These numbers 
are denser f o r  speeds below Mach 2 than those above, and very dense i n  t h e  region around 
Mach 1. For intermediate values  of Mach number, l i n e a r  in te rpola t ion  is used. 

Inadequate knowledge of t h e  drag coe f f i c i en t  is one of t h e  major sources of 
inaccuracy i n  the simulation of  drag. Since drag coe f f i c i en t  is a function of Mach number, 
drag coef f ic ien t  da t a  are obtained by wind tunnel measurements made a t  a range of Mach 
numbers. These d a t a  are tabulated t o  a prec is ion  of 1 part  i n  30. A t  best  then, t h e  t o l e r -  
ance is ha l f  of 1 part i n  30, or  *I.'&. I t  is believed, however, t h a t  t h e  t o t a l  e r r o r  1s 
more i n  t h e  order of *3%, even a t  t h e  tabulated points .  

4.4.2.7 D i s c o n t i n u i t y  Between Cont inuum and F r e e  M o l e c u l a r  Flow. I t  is r e a d i l y  
seen t h a t  t h e  formula for drag  (paragraph 4.4.2.1) i n  t h e  region of free molecular flow is 
d i f f e r e n t  from that  in  t h e  region of continuum flow. Even i f  the two formulas were t o  agree 
a t  one a l t i t u d e  f o r  a given V, and C,,, permitt ing a continuous t r ans i t i on  from one formula 
t o  t h e  o the r ,  there  would be no cont inui ty  a t  t h e  junc t ion  of t h e  regions for a d i f f e r e n t  
V, or  Cav. 

is taken between t h e  d rag  values  computed by t h e  two methods and gradual ly  s l i d e  the  weight 
from uni ty  for f r e e  molecular flow and zero for continuum flow t o  uni ty  for continuum flow 
and zero f o r  f ree  molecular flow. 

A possible so lu t ion  is t o  introduce a t r a n s i t i o n  region i n  which a weighted average 

'+. II. 3 A T M O S P H E R I C  MODELS 

4 4 3 I 
of t h e  composition of the  atmospheres of  Jupi te r ,  Mars, Venus, and t h e  Earth. A discussion 
is provided of  the models cur ren t ly  being used (or  developed) t o  s imula te  these atmospheres. 

I n t r o d  u c t i on. The following paragraphs provide a sumnary of  cur ren t  knowledge 

4 4. 3.2 
J u p i t e r ' s  atmosphere. A t  t h e  present  time, it is considered premature t o  even begin t o  
consider  the re la t ionship  of densi ty  t o  a l t i t u d e .  

Ju P i t e  r .  Current s t u d i e s  are concentrated on determining the composition O f  

4.4. 3. 3 
a l t i t u d e s  up t o  about 30 km. 

M a r s .  Density versus a l t i t u d e  da ta  f o r  Mars are f a i r l y  well agreed upon for  
For a l t i t u d e s  up t o  80 km, S c h i l l i n g  (reference 9) gives 
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values for dens i ty  with a .aximm uncertainty of about 8:1, and a standard deviat ion of about 
3: 1. 
l i s t i n g s  of logarithm of dens i ty  versus  a l t i t u d e  are made; l i n e a r  in te rpola t ion  is used 
between tabulated values; and t h e  a n t i l o g  is obtained. With a 7-value table of dens i ty  and 
a l t i t u d e ,  a maximum error of 1.4% can be obtained for the  Sch i l l i ng  Yodel I1 Mars atmosphere. 

Sch i l l i ng ’ s  model is easily approximated by an exponential interpolat ion:  tabular  

4.4.3. 9 Venus. Because the Surface Of Venus is always obscured from view, t h e r e  is 
l i t t l e  agreement about its atmospheric model. o r  composition within t h e  cloud leve l  (at about 
30 km i n  a l t i t u d e ) .  
there& providing fairly d e f i n i t e  data. 

However, i n  1959, t h e  star Regulus w a s  occulted a t  100 km i n  a l t i t u d e ,  

There are the  th ree  theo r i e s  of the model of Venus’ atmosphere: greenhouse; 
aeolosphere; and ionosphere. However, no one theory explains  a l l  of t h e  ava i lab le  infonna- 
t i o n  about Venus. 
a l t i t u d e  curve f o r  Venus. 

2 t h e  present time, there  is no general ly  acceptable densi ty  versus 

9 .4 .3 .5  E a r t h  

4.4.3.5.1 General. Although knowledge of t he  Earth’s atmosphere is not complete, t h e  knom 
effects are far mre complete than for any of t h e  o the r  p l ane t s  and represent  an adequate 
model of  t he  Earth’s atmosphere even at a l t i t u d e s  of 2OOO km (about 6.6 million f ee t ) .  I t  is 
convenient t o  separate t h e  atmosphere i n t o  two parts, t h e  lower atmosphere and upper atmos- 
phere, w i t h  t h e  separa t ion  occurring at about 120 km (400,000 ft.). Drag i n  t h e  lower 
atmosphere is large and a vehic le  en te r ing  it w i l l  usua l ly  be slowed down s u f f i c i e n t l y  t o  be 
captured by t h e  Earth. 
case. 
mainly over long time arcs (o rb i t i ng  mission). 
atmosphere can probably be neglected. 

Thus, t h e  lower atmosphere is primarily of concern i n  t h e  reentry 
The upper atmosphere is characterized by smaller drag e f f e c t s  which are of s igni f icance  

In  t h e  cases of reentry and fly-by, t h e  upper 

4.4.3.5.2 Lmer Atmosphere. Data f o r  an average model have been well established f o r  the  
lower atmosphere. There are five sources for  these  data: U.S. Standard Atmosphere, 1962; 
COSPAR In t e rna t iona l  Reference Atmosphere (CIRA). 1961; COESA Table f o r  Tropical Lat i tudes.  
1962; ARDC Model Atmosphere 1956, 1959. Table 4.4-1 shows the  densi ty  deviation ( i n  percent) ,  
as a function of a l t i t u d e ,  of each of t h e  o thers  f r o m  t h e  U.S. Standard Atmosphere values. 
Prom t h e  table, it is evident t ha t ,  except f o r  t h e  O E S A  t ab l e s ,  there is good agreement 
between t h e  var ious  t a b l e s  a t  low a l t i t udes .  Note t h a t  t h e  U.S. Standard Atmosphere and 
CIRA tables are i n  exce l len t  agreement ai i  the  aw io 123 !m :4O??.GKl feet!: 

The lower atmosphere is character ized by seasonal, diurnal ,  and l a t i t u d e  var ia t ions ;  
The only effect of w i t t i n g  them is 

It was estimated i n  
however, none of these  are s u f f i c i e n t l y  well documented. 
t h a t  t h e  impact poin t  of a re-enter ing bods would be s l i g h t l y  d i f fe ren t .  
1958 t h a t  t h e  standard deviation for a heat-sink type nose cone used in  t h e  ICBM appl ica t ion  
is only about 0.5 nm. 

The speed of sound i n  t h e  lower atmosphere can also be obtained from t h e  f i v e  
sources  given earlier, but only i n  t h e  range 0 t o  90 km. However, f o r  t h e  U.S. Standard 
Atmosphere and C m  sources, values up t o  120 km can be computed frm absolute  temperature 
and mean molecular weight data tabulated i n  these  tables. 
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T a b l e  4.4-1. Comparison of Sources of Density Data 

A1 t i tude 

km 

0 

3.0 

5.5 

10.1 

14.6 

20.4 

29.0 

33.5 

48.8 

67.1 

91.4 

121.9 

f t  

0 

10,000 

18,000 

33,000 

48.000 

67.000 

95,000 

110,000 

160,000 

220,000 

300,000 

400,000 

J.S. Standarc 
Atmosphere 

Density 
Values 

(Reference) 
s l u g s / f t 3  

2. 38'3 

1. 76'3 

1. 36'3 

7.97-4 

4. 00'4 

1. 61e4 

4.20-5 

2. O r 5  

2. 32'6 

2.50" 

4.62-9 

3.62'11 

Percent Deviation From Reference 

ARDC 
1956 

0 

0 

0.04 

0.05 

0.09 

3.28 

0.59 

3.13 

4.77 

15.0 

31.2 

81.5 

ARM: 
1959 

0 

0 

0 

0 

0 

0.16 

- 2.36 

- 3.13 

4.77 

15.5 

-10.8 

-35.0 

CIRA 
1961 

0.55 

-0.91 

1.85 

1.68 

2.36 

0.48 

0.10 

0.68 

0.77 

1.30 

0.11 

1.17 

c o r n  
1962 

- 4.77 

- 5.32 

- 1.67 

1.92 

15.5 

6.80 

0.46 

2.53 

8.93 

8. 10 

-- 
-- 

4.4.3.5.3 Upper Atmosphere. Models of the E a r t h ' s  upper atmosphere must take in to  account 
s o l a r  a c t i v i t y .  
days, 6 months, 1 year,  and 11 years. 

There is evidence t h a t  s o l a r  a c t i v i t y  occurs c y c l i c a l l y  a t  periods of 27 

Theoretical models do not ex is t  f o r  t h e  27-day, 6-month, and 1-year cycles. 
Diurnal var ia t ions,  i f  any, of t h e  models f o r  these cycles  a r e  not known. Completion of 
synthesis  of t h e  27-day model is not an t i c ipa t ed  u n t i l  mid-1964; completion of the synthesis  
of t h e  o the r  two models w i l l  be l a t e r  t h a n  tha t .  
(corresponding t o  the sunspot period) i n  s o l a r  f l u x  has lead t o  the Harr is-Priester  mode1 of 
the upper atmosphere. 
R. Bryant Of t he  Goddard Space Fl ight  Center ( ~ m )  h a s  had excellent results using density 
da t a  from t h i s  model t o  predict  the o r b i t  of t he  Echo S a t e l l i t e  over an extensive period Of 

time. 

Invest igat ion of t h e  11-year cycle 

This model (references 10 and 1 1 ) h a s  diurnal  and s o l a r  f lux var ia t ions.  

Roemer (reference 1 2 ) ,  assuming the  exosphere t o  s t a r t  a t  600 km, performed a 
Fourier ana lys i s  on the  temperature v a r i a t i o n s  of s o l a r  f l u x  below t h a t  a l t i t u d e  and assumed 
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isothermal condi t ions above. The r e s u l t i n g  numerical approximation w a s  accurate  t o  *'&. 
Program (wri t ten by R. Devaney of GSFC) based on these r e s u l t s  occupies 1530 words of storage 
on t h e  IBM 7094 computer. Approximately 1710 words of storage are needed f o r  constants.  
Harris indicated t h a t  t h e  start of t h e  exosphere could be reduced t o  400 km which would 
reduce t h e  cons tan ts  storage to  1450 words, but leave t h e  program size unchanged (at 1530), 
for  a to ta l  of 2980 words. 

A 

I n  an attempt t o  shorten computation and reduce storage without causing a 
s i g n i f i c a n t  d e t e r i o r a t i o n  i n  accuracy. the use of a simple table-lookup procedure for 
dens i ty  w a s  investigated.  The r e s u l t  is a t ab le  comprising 1074 words of storage. Density 
da ta  are s tored at each combination of 16 values of a l t i t u d e ,  13 values of local solar time 
(difference between the  right ascensions, on the  c e l e s t i a l  sphere. of  t h e  vehicle  and the 
Sun), and 5 values  of  solar flux. The values of a l t i t u d e ,  time. and s o l a r  f l ux  are also 
stored, adding 34 values. For a maximum e r r o r  of  2.7%. l i n e a r  exponential  in te rpola t ion  
( i n  3 dimensions) is satisfactory. This maximum error would only be obtained i f ,  simultane- 
ously,  solar f lux  is high ,  local time is at 14 hours, and a l t i t u d e  is half-way between two 
tabula ted  values. The average error would probably be below 1%. The program size was 
estimated from the  equations as 645 for a t o t a l  of 1900, after adding 1% of  t h e  total  f o r  
contingency . 

There is an i n t u i t i v e  d i f f i c u l t y  in using local solar time as one of the Parameters: 
A t  t h e  North or South pole, there is no midnight and noon, local s o l a r  time being undefined. 
Since t h e r e  is no evidence of direct  var ia t ion of t h e  Harr i s -Pr ies te r  model with vehicle  
l a t i t u d e ,  it has been suggested t h a t  t h e  use of zeni th  angle i n  place of local solar time 
might give more i n t u i t i v e l y  s a t i s f y i n g  results. 
celestial  sphere between t h e  vehicle  posi t ion and t h e  Sun's posi t ion.)  
use  of  zeni th  angle introduces an unacceptable discont inui ty .  
v e h i c l e  a degrees above t h e  ecl ipt ic  decreases t o  a degrees a t  noon (minimum) and then 
increases  again; it can never decrease below a degrees. This is evident from f igure  4.4-2. 
To y i e l d  a cyclic time function, zeni th  angle would have t o  be arbitrari ly made negative 
before  noon, going t o  -a degrees a t  noon, and + a degrees instantaneously after noon. This 
d i scont inui ty  is unsat isfactory.  Therefore. t h e  use of local s o l a r  time is recommended 
d e s p i t e  t he  inherent  d i f f i c u l t y  a t  noon and midnight. 

(Zenith angle is t h e  angle subtended on t h e  

The zeni th  angle f o r  a 
Unfortunately. t he  

The upper atmosphere has a delaying effect  on s o l a r  radiat ion.  I t  takes several  

In tu i t ive ly ,  
hours for  t h e  Sun' s hea t  t o  pass through t h e  atmosphere and reach t h e  Earth 's  surface. The 
Harris-Priester rodel is based on d e n s i t i e s  computed a t  t h e  Ear th ' s  equator. 
it is expected t h a t  it w i l l  take longer fo r  t he  solar f lux  t o  reach t h e   des tis npposed t o  
t h e  equator.  Therefore. it is considered t h a t  there is an e f f e c t i v e  var ia t ion  of solar f l u x  
wi th  l a t i t u d e .  This  v a r i a t i o n  is implemented i n  t h e  Program by apyilying t h e  Harr i s -Pr ies te r  
model a t  the equator  and a s tored table of " t w i l i g h t "  d e n s i t i e s  at  the poles. The cosine of 
t h e  l a t i t u d e  of t h e  vehic le  is used as a weighting factor t o  in te rpola te  between t h e  two 
se t s  o f  data.  

4.4.3.5.4 
model, t h e  dens i ty  a t  120 km is fixed independently of solar  f lux  and time of day, and is 34% 
higher than t h e  U.S. Standard Atmosphere value. 
g ives  a value close t o  it so t h a t  there  is a d iscont inui ty  i n  densi ty  between t h e  Harris- 
Priester model and a l l  of t h e  models of the lower atmosphere. 

Density Discontinuity Between Lower and Upper Atmospheres. In  t h e  Par r i s -Pr ies te r  

NO other  model for t h e  lower atmosphere 
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Figure 4.4-2. Zenith A n g l e  Variation 

4.4.3. 6 General  C o n s i d e r a t i o n s  f o r  A t a o r p h r r i c  S i m u l a t i o n  

4.4.3.6.1 
the  oblate earth should be used f o r  the Harris-Priester model of the upper atmosphere. 
the  lower atmosphere, the same def in i t ion  of a l t i t ude  should be used. 

Definition of Altitude. Harris has suggested t h a t  the geocentric 8 l t i t ude  8bove 
FOr 

For a l l  other planets,  geocentric a l t i t ude  above an e l l ipso ida l  o r  Spheric81 Planet 
could be used. 

4.4.3.6.2 The average veloci ty  of particles i n  the  medim (C,,) is Of 
importance only when t h e  a l t i tude  is high enough so tha t  free molecular flow is vrl id .  
molecular flow is of concern only fo r  the Earth since,  for  o ther  planets,  the a t m s p h e n s  
are not known t o  a high enough a l t i tude .  For the Earth, f r m  f igure 4.4-1, it is seen t h a t  
for  t he  usual space vehicle dimensions, f ree  molecular flow occurs i n  the umer  8tMsPhere. 

Medium Velocity. 
Free 

I. 3.4-(1) and I. 2.6-(1) of reference 7, C,, is found t o  be proportional 
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where 

PEBTUREATIONS 

T is absolute temperature 

M is mean molecular weight 

The medium ve loc i ty  can be computed using values of T and M from the  Harr is-Priester  model. 
The v a r i a t i o n  i n  C,, with local time and s o l a r  f l ux  was *22% f o r  a l t i t u d e s  below 500 km and 
*14% for a l t i t u d e s  above 500 kin. 
a l t i t u d e  only, an error i n  drag of *2% would be introduced. 
magnitude is intolerable .  

Therefore, were Cav t o  be approximated by a function of 
An error o f  t h i s  o rde r  of 

Thus, drag is l i n e a r l y  proportional t o  both densi ty  and medium veloci ty ,  b o t h  of 
which are functions of t h e  same three parameters ( a l t i t u d e ,  local time, and s o l a r  f lux) .  It 
is na tu ra l  then, for a l t i t u d e s  where f r e e  molecular flow pertains ,  t o  store the  product of 
dens i ty  and medium ve loc i ty  (as a function of t h e  th ree  parameters) instead of both densi ty  
and medium ve loc i ty  separately. 

4.4.3.6.3 Accuracy. R o m  t h e  foregoing analyses. it is concluded t h a t  t h e  computation of 
drag is probably accurate t o  i s  i n  t h e  Earth 's  lower atmosphere. and is less accurate  i n  the  
upper atmosphere. For Mars, t h e  knowledge of drag is probably not as accurate as *1m, and 
f o r  Venus considerably worse. 
can always be computed i n  s i n g l e  precision without degrading t h e  over-al l  precis ion of 
computation. 

Therefore, ca l cu la t ion  of drag and its cons t i t uen t  parameters 

4. I). Y DRAB COMPUTATIOW METHODS USED B Y  PR06RAM 

Y .  Y .  Y .  I 
a compromise between s ta te-of- the-ar t  and ease of computation. 

General . The following methods f o r  d r sg  computations represent,  i n  most cases, 

Programs and tables are included for computing drag over any combination of the 
following: 

(a) Lower atmosphere Earth 

(b) Upper atmosphere E a r t h  

(c) Mars 

(d) Venus 

(e) Jup i t e r  

The programs are selected a t  the  operator 's  discret ion.  

When drag is to  be included i n  t r a j ec to ry  computations, a dis tance test, which 
The d i s t ance  to  t h e  v a r i e s  with t h e  reference system which the vehicle  is i n ,  is made. 

c e n t e r  of t h e  reference body is computed and compared w i t h  center  dis tances  corresponding 
t o  t h e  following a l t i t u d e s :  

0 km - used to  ind ica t e  assumption of no atmospheric drag 

80 km - height  corresponding t o  upper l eve l  of Mars' atmosphere 
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180 knl - I:*31pfit c n r r p s p o n d i n g  to  uoper  l e v r l  of Vriius’ atmos[;here 

210 km - h c i g h t  c o r r e y m n d i n g  t o  upper  l e v e l  nf E e r t h ’ s  lower a tmosphere  ( o n l y  
I I S ~  whpn t h e  E a r t h ’ s  uppPr itr.mosphrrc. is ignored’, 

;i( i~ kv - heiEb4 c o r r e s p o n d i n g  t o  upper  l e v e l  o f  E a r t h ’ s  u p p e r  a tmosphere .  

J f  n l l  nf t.he dirtar,cp tests f a i l ,  d r a g  is se t  e q u a l  t o  zero. I f  any  t e s t  p a s s e s ,  
d r a g  is c o r n p u t 4  as f o l l o w s .  

( : I \  

( b )  

The p l w e t o c e n t r i c  a1 t i t u d e  is computrd.  

The al t , i tw:ci  v a l u e  USW! by t h e  d r a g  computa t ion  s u b r o u t i n e  is t h e  d i s t a n c e  
betwPrn t h c  v e h i c l e  p o s i t i o n  and t h e  c e n t e r  of t h e  r e f e r e n c e  body minus t h e  
r a d i u s  o f  the r e f e r e n c e  body. For Mars, Venus and J u p i t e r ,  t h e  r a d i u s  of t h e  
r e f f l r m c e  hodv is t a k e n  t o  be  c o n s t a n t .  F o r  t h e  E a r t h ,  i t  v a r i e s  w i t h  t h e  
l a t  i t i l d r  o f  t h e  v e h i c l e  and must be computed from t h e  l a t i t u d e  and t h e  
e l 1 i p t . i r i t . y  o f  t he  E a r t h .  T h e r e f o r e ,  i f  t h e  e a r t h  i s  t h e  r e f e r e n c e  body, t h e  
g e o c e n t r i c  l a t i t u d e  is computed t o g e t h e r  w i t h  t h e  r a d i u s  based on a n  o b l a t e  
s p h c r i c a l  E a r t h .  

(c) Drag is computed u s i n g  e i t h e r  e q u a t i o n  (1) or  (3) o f  p a r a g r a p h  4.4.2.1,  as 
a p p l i c a b l e .  ( R e f e r  t o  p a r a g r a p h  4.4.4.2. ) 

4.4.4.2 Selection o f  Drag Equation. E q u a t i o n  (3) of paragraph  4.4 .2 .1  is used  o n l y  
for  t h e  f o l l n w i n g  c o n d i t i n n s :  

( a )  When t h e  computa t ion  is  to  b e  performed for  t h e  E a r t h ’ s  u p p e r  a tmosphere  a t  
a l t i t u d e s  i n  excess of 100 km, w i t h  t h e  E a r t h  as  t h e  r e f e r e n c e  body. 

I f  t h e  computa t ion  is t o  be  per formed f o r  t h e  E a r t h ’ s  a tmosphere  i n  t h e  
t r a n s i t i o n  r e g i o n  bet.ween cont inuum f l o w  and f r e e  m o l e c u l a r  f low,  COmpUtatiOnS 
a r e  performed u s i n g  bot,h e q u a t i o n s  (1) and ( 3 ) .  

( b )  

E w a t i o n  (1 )  is used f o r  a l l  o t h e r  cases. 

F igurP  4 . 4 . - 1  i n d i c a t e s  t h a t  a l t i t u d e s  between 120 and 130 km would p r o v i d e  a 
T a b l e s  above  120 km are 3 - d i m e n s i o n a l ,  i . e . ,  t . h e o r e t  i c a l l y  d e s i r a b l e  t r a n s i t i o n  r e g i o n .  

d e n s i t y  is tabula t ,ed  v e r s u s  solar f l u x ,  local so la r  t i m e ,  and a l t i t u d e ;  t a b l e s  below 120 km 
are 1-d imens iona l ,  i . e . ,  d e n s i t y  is p l o t t e d  v e r s u s  a l t i t u d e  o n l y .  Thus,  to  s a v e  Computer 
memory s p a c e ,  t h e  r a n g e  o f  100 t o  120 km is a r b i t r a r i l y  c h o s e n  as t h e  t r a n s i t i o n  r e g i o n .  
T h i s  c h o i c e  o f f e r s  a n  a d d i t i o n a l  a d v a n t a g e :  
a tmospheres  is br idged  by u s i n g  t a b l e  v a l u e s  of  p - C,, o n l y  w i t h  t h e  H a r r i s - P r i e s t e r  model. 

t h e  d i s c o n t i n u i t y  between t h e  upper  and  lower 

For t h e  t r a n s i t i o n  r e g i o n ,  bo th  d r a g  e q u a t i o n s  p l u s  t h e  t r a n s i t i o n  f u n c t i o n  
( p a r a g r a p h  4.4.2.7) are used.  

9 . 9 . 4 . 3  Determination o f  Drag Equation Parameters 

4 .4 .4 .3 .1  
computed from t h e  v e h i c l e ’ s  inertial  v e l o c i t y  (Vi) by s u b t r a c t i n g  from vi 
o f  t h e  a i r  mass w i t h  respect to  t h e  p l a n e t ,  and 
t o  t h e  c o o r d i n a t e  sys tem.  The l a t t e r  comes from t h e  e p h e m e r i s  t a p e ,  t h e  f o r m e r  is 

Air V e l o c i t y .  h e  v e l o c i t y  of t h e  v e h i c l e  w i t h  respect t o  t h e  a i r  mass (v,) is 
(1) t h e  v e l o c i t y  

(2 )  t h e  v e l o c i t y  of t h e  P l a n e t  w i t h  r e s p e c t  
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PERTUREATIONS 

calculated.  
is made t h a t  t h e  a i r  m a s s  is r ig id ly  attached to  t h e  p lane t  and r o t a t i n g  w i t h  the planet .  
Wind v e l o c i t i e s  are neglected. 

To ca lcu la t e  ve loc i ty  of t h e  a i r  m a s s  w i t h  respect to  t h e  planet ,  an assumption 

The magnitude of v,, t he  air speed, is used i n  the  ca lcu la t ion  of Mach number 
(for t h e  lower atmosphere). 
be aligned with -va. 

%e d i rec t ion  of t he  drag vector is computed by assuming it to 

4.4.4.3.2 
number. Mach number is computed f r o m  air speed, V,, and t h e  speed of  sound, using s tored  
t abu la r  d a t a  (paragraph 4.4.4.4.3) f o r  the  speed of sound. 

Mach number (M) is used as t he  independent var iab le  and t h e  coe f f i c i en t  of drag 
Two tables are stored,  one each f o r  M and CD (each of 40 values) ,  

Drag Coeff ic ient .  The coe f f i c i en t  of drag is computed as a funct ion of Mach 

(C+,) computed from it. 
and l i n e a r  i n t e rpo la t '  2s used to  f ind  t h e  C+, corresponding t o  a given M. 

4.4.4.3.3 Surface  are^ 
inputs :  one f o r  use in  t-tiriation (3) for free molecular flow, and one for use in  equation 
(1) for continuum flow. 

W o  values  of e f f ec t ive  sur face  area are provided as program 

4.4.4.3.4 
Schedules for changes i n  mass are incorporated in to  the  powered f l i g h t  ana lys i s  of the 
Program. 

Mass. Mass rates are not  considered t o  be a part of the atmospheric models. 

4.4. 4.4 Tab1 es Requ i red 

4.4.4.4.1 General. There are th ree  sets of t a b l e s  required by t h e  Prograg; t h e  first 
two sets are funct ions of the  atmospheric medium but  are independent of t h e  vehicle ,  whereas 
t h e  t h i r d  is a funct ion both of t h e  vehicle and the mission but  no t  of t h e  medium. 

The first set  of tables is used t o  simulate the  dens i ty  of air at  t h e  vehicle  
pos i t i on  i n  t h e  upper atmospheric model (Harris-Priester) f o r  t h e  Earth.  The second set is 
used t o  s imulate  the  dens i ty  and speed-of-sound f o r  low-level atmospheres, not only f o r  the  
Earth,  but for Mars, Venus and Jupiter, a s  well. The t h i r d  set  is used, f o r  low-level 
atmospheric models, t o  ca l cu la t e  t h e  coe f f i c i en t  of drag of t he  vehicle  (zero l i f t  is 
assmed) as funct ion of both Mach number and t h e  shape of the  vehicle (especially near t h e  
nose ) . 
4.4.4.4.2 Five tables are needed t o  simulate t h e  Ea r th ' s  
upper atmosphere. Two of the  t a b l e s  give values  of a function of t h ree  var iables ,  t abula ted  
a t  d i s c r e t e  values  of each of t h e  th ree  var iables .  B e  values of each of t h e  th ree  
va r i ab le s  a t  which t h e  funct ions (logarithm of Harr i s -Pr ies te r  p C,, da ta  and logarithm of 
p * C,, evaluated a t  the  poles) are tabulated, a r e  i n  turn,  l i s t e d  i n  th ree  separate tables 
of  argument values. 
solar time. 
l o c a l  solar time 13 en t r i e s .  

Ear th ' s  Upper Atmosphere Tables. 

The three independent var iab les  are a l t i t ude .  solar f lux  and local 
The a l t i t u d e  t a b l e  has 16 en t r i e s ,  t he  s o l a r  f lux  table 4 en t r i e s ,  and the  

The f i r s t  of t h e  two funct ion t ab le s  lists t h e  logarithm (base 10) of t h e  product 
This o f  dens i ty  ( i n  u n i t s  of gm/km3) and mean particle ve loc i ty  i n  the  medium ( i n  km/sec). 

t a b l e  is s to red  a t  every combination of a l t i t u d e ,  s o l a r  f lux,  and loca l  solar time and, 
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t h e r e f o r e ,  h a s  16 x 4 x 13 = 1300 t*ntr,p%. The > ? c o d  fi1rlctiGn t u b l c  l i x t s  the l o g a r i t h m  
( b a s e  10) of t h e  product o f  H i r  d e n s i t ;  an,! w h r  y . r t ) t  ! r  vcio~-?t;  tmt t i ? + +  hre evr t lua ted  a t  
t w i l i g h t ,  i . e . ,  at t h e  poles. This produr', is ii f i i r s - t i n n  rlf ::it l tu t le  and ;o ia r  f ? u x ,  and 
so t h e  t a b l e  h a s  16 x 4 = 64 e n t r i e s .  The d a t ;  lclr .hf : : p - r  . , t r i ~ ~ ; + . t r e  t a b l e s  are  rakerl 
d i r e c t l y  from t h e  f i n d i n g s  of Harris and P r i e s t C r ,  f ixcvpt lo r  tt,e mean p a i t i c l e  v e l o r i t y .  
T h i s  q u a n t i t y  is computed u s i n g  t h e  methor! d e s c r i b e d  in  parngral ih  4.4.3.6.2.  

4 .4.4.2.3 Lower Atmosphere T a b l e s .  The i n d e p m d e n t  v a r i a b l e  used  i n  t h e  lower atmosphere 
t a b l e s  is a l t i t u d e ;  d e n s i t y  and speed  o f  sound are computed from a l t i t u d e .  

Three t a b l e s ,  50 v a l u e s  e a c h ,  ere s t o r e d  f o r  t h e  E a r t h ' s  lower a tmosphere :  a l t i t u d e ;  

D e n s i t y  
l o g a r i t h m  ( b a s e  10) of d e n s i t y ;  s p e e d  o f  sound. 
up is performed by l i n e a r  i n t e r p o l a t i o n  i n  t h e  l o g  d e n s i t y  and s p e d  of sound t a b l e s .  
is t h e n  computed by d e t e r m i n i n g  t h e  v a l u e  g i v e n  by 10 r a i s e d  t o  t h e  power e q u a l  t o  t h e  
l o g a r i t h m  o f  d e n s i t y .  

For a g i v e n  v a l u e  o f  a l t i t u d e ,  a t a b l e  look- 

Three  similar t a b l e s  are s t o r e d  for  rnch of !,he Mars anti Venus a tmospheres  (15  
v a l u e s  p e r  t a b l e ) .  D e n s i t y  and  speed  of sound arc Lound in  the smune mannrr as for t h e  E a r t h .  

No d a t a  a r e  a v a i l a b l e  fo r  t h e  J u p i t e r  a tmosphere.  

The t h r e e  E a r t h  t a b l e s  are ohtaineci  from 1J.S. S t m d a r d  Atmosphere, 1962, i n  which 
d e n s i t i e s  and speed o f  sound a t  a l l  aLt.itudes helow 90 km a x r  l i s t e d .  
sound was c a l c u l a t . e d  as p r o p o r t , i o n a l  t o  t h e  s q u a r e  root of t e m p e r a t u r e  d i v i d e d  by mean 
m o l e c u l a r  weight ,  both o f  which are a v a i l a b l e  d j r e c t l y .  
i n  a l t i t u d e  so  t h a t  i f  it is d e s i r e d  t o  excludtx t h e  u p p e r  a tn losphere ,  t h e  lower a tmosphere  
c a n  be  e x t e n d e d  up to  210 km. 

Above 90 km, s p e e d  Of 

Tht? t a b l e s  a c t u a l l y  go tip to  210 km 

The d e n s i t y  d a t a  for  Mars are o b t a i n e d  from S c h i l l i n g ' s  "mean" Model I1 Atmosphere. 

The speed  c f  sound f o r  Venus 
The s p e e d  of sound is o b t a i n e d  from t e m p e r a t u r e  and a c o n s t m i .  mean m o l e c u l a r  weight  (same 
s o u r c e ) .  The d e n s i t y  f o r  Venus is o b t a i n e d  from r e f e r r n c r  13.  
was c a l c u l a t e d  from t e m p e r a t u r e  nnd a c o n s t i i n t  molcicular Ht*!g:l-lt oot.asned from t h e  same 
s o u r c e .  

4.4.4.2.4 V e h i c l e  Dependent Tables .  
s u r f a c e  area (1 v a l u e ) ,  a t a b l e  (40 v a l u e s )  o f  Mach numtwr ( indeptn t i r i r t  v a r i a b l e ) ,  and a 
t a b l e  c o n t a i n i n g  t h e  d r a g  c o e f f i c i e n t  ( d r p e n d e n t  v a r i a h l e )  f(Jr e a c h  Mach Number. 

The c h a r a c t e r i s t i c s  of o n e  v e h i c l e  c o n s i s t s  of  a 
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P EPTURB AT1 ON S 

4 5 S O U R  RAD I AT I ON PRESSURE 

4.5. I 
in te rcept ing  surface. 
ratio are sub jec t  to  Perturbations due to  solar r ad ia t ion  pressure. 
vehic le ' s  acce le ra t ion  due to  solar rad ia t ion  pressure is a funct ion of the  degree of solar 
il lumination to which t h e  vehic le  is subjected. 
p lane t ' s  shadow ( f igu re  4.S-1); under this condition. the p lane t  obscures from the satellite 
part of or a l l  of t he  direct sunl ight .  
sidered i n  t h e  following analysis :  f u l l  sunl ight ;  penumbral i l l m i n a t i o n ;  no illumination. 
(Refer t o  paragraph 3.1.) 

I NTRODUCT I ON. Electnnametic rad ia t ion  is known to exe r t  a pressure on an 
Orbiting p l a n e t a q  satellites having a large surface-area-to-mess 

The value of t h e  

The satellite a t  a given time aey be i n  it's 

nree discrete ranges of i l luminat ions are con- 

11.5.2 ACCELERATION DUE TO RADIATION PRESSURE. 
solar rad ia t ion  pressure is computed from the following equation: 

The accelerat ion.  F5, due to 

where 

P is an i l lumination factor which is a funct ion of the m m n t  of direct  
sun l igh t  to which t h e  vehic le  is subjected: 

P = 1 i n  f u l l  sunl ight  

P = 0 i n  umbral region 

P i n  t he  penumbral region is a funct ion of t h e  degree of satellite 
shadowing 

Cp is a constant related to the  t o t a l  energy radiated from the  Sun 

R, is the  pos i t i on  of t h e  Sun with respect to  t h e  vehicle  

The computation of P for t h e  penumbral region is described i n  paragraph 4.5.4. 
It is possible that  a satellite m y  lie within the shadows of two or wre bodies, e. g., the  
Earth and t h e  Moon; i n  such a case, the illumination factor is properly c a p u t e d  by a 
cons idera t ion  of the  r e l a t i v e  geometry among the  vehicle ,  t he  slm. and the  bodies involved. 
However. an adequate approximation is obtained by computing separately the  penumbral factors 
(P's) for each body, and s e t t i n g  the  total  factor equal t o  the  product of t h e  individual  
factors, i.e., 
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ANALYTICAL BASIS 

Figure 4 . 5 - 1 .  Satellite Shadowing 



PERTURBATIONS 

4.5.3 SATELL I TE SHADOWIIB. Fitxure 4.5-1 illustrates the geometry of satellite 
shadowing. neglecting t h e  effects of atmospheric refraction By similar t r iangles .  it is 
seen that the umbral cone has an altitude-of 

RSP 

[$ - 11 

Similarly. the  altitude of the  penumbral cone is given by 

- RSP 
h P  - [; + 1- - 

Atmospheric re f rac t ion  causes a d i f fus ion  of t h e  umbral and penumbral boundaries. 
Earth's atmosphere is considered dense enougb to have a s i g n i f i c a n t  effect on these 
boundaries. 

(hly the 

Figure 4.5-2 i l l u s t r a t e s  the classical approach i n  def ining the  semidiameter of 
the Bi r th ' s  umbra a t  the o r b i t  of the Yoon. Le., the semidiameter %, of the in te rsec t ion  
of t h e  Earth 's  umbral cone with the  plane which (a) passes through the Yoon at its mean 
o r b i t a l  radius and (b) is normal to t h e  l i n e  between centers  of the Sun and Earth. 
figure 4.5-2. 

From 

su = nu + ns - ss (3 1 

where 

nu = l u n a r  p a r a l l a x  

n6 = s o l a r  p a r a l l a x  

Ss = solar  semidiameter 

An analogous expression f o r  the semidiameter of the  Earth 's  penmbra. Sp, at the o r b i t  of 
t h e  Yoon may be derived, y ie ld ing  

sp = ny + ng + sg ( 4 )  
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ANALYTICAL BASIS 

Figure 4.5-2. Semidiameter of Earth's Umbra A t  Orbit of Moon 



~~ ~~~~ 

PERTURB AT IONS 

c v e f u l  observations of luna rec l ip seshave  sham that S,, and % are actually 
about m m t e r  thau the  values given by equations (3) and (4). respectively. Hence. 

* -  
sI1 - 1.02 (77" + 7rs - SS) 

and 

* -  sp - 1.02 (77" + "6 + SS) 

( 5 )  

These enlargaments arise from ref rac t ion  due to t he  Earth 's  atmosphere (see references  14 
and 15). 
sence of the Ecrrth's atasphere. The simplest correct ions t h a t  can be .ade are to enlarge 
t h e  c e n t r a l  angles  of the mbral and penumbral cones. 

The geaetry of both the  umbra and penllabnr is greatly capl icated by the  pre- 

Criteria rill now be developed t o  determine whether o r  not  a vehicle lies in 
either o f  t h e  two shadow zones. 

For the  umbral region, the  planetocentric posi t ion P of the  cone's apex (f igure 
4.5-3) is given by 

RSP 

RSP 
P = h u  - (7 )  

Let 
hU 

hu' =- K 

POSITION OF 
SATELLITE 

APEX OF 
UMBRAL 

a 

Figure 4.5-3. Umbral R e g i o n  Geometry 
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where 

K = 1.02 f o r  t h e  E a r t h  

K 1 f o r  a l l  o t h e r  p l a n e t s  

F m  f igure 4.5-3, it is seen t h a t  the cosine of the cone's centra 
s i n  a: 

c o s  A = s i n  a 

where a includes the e f f e c t s  of refract ion.  

I t  can be shom t h a t  

RP 
c o s  A = 

half-angle is equal t o  

( 9 )  

(10) 

J l  [%.- 
I f  R ( f igu re  4.5-3) represents the s a t e l l i t e ' s  planetocentr ic  posi t ion,  and i f  the 

Vehicle posit ion w i t h  respect t o  P is given by equation (11) 
s c a l a r  product R P is posi t ive,  then the s a t e l l i t e  is on the s i d e  of the planet away from 
the Sun. 

R ' = R - P  (11) 

The cosine of the angle, y, between R '  and -P is obtained from the d e f i n i t i o n  of a vector 
dot  product : 

I t  follows, then, t h a t  the s a t e l l i t e  lies w i t h i n  the umbral region i f  cos y is pos i t ive ,  a n d i f  

l c o s  yI 2 \ c o s  A I .  

For the penumbral region, using a s imi l a r  coordinate system a s  shown i n  f igure 4.5-4. the  
posi t ion of t h e  cone's apex, Q, is obtained from 

(13) 

Let 

h P  
h,' = - K 

(15) 

K = 1.02 f o r  E a r t h  
K = 1.0 f o r  a l l  o t h e r  p l a n e t s  
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Then, 

A g a i n  
the 

The 

The 

the 
t h e  
sun 

POSITION OF 
SATELLITE 

Figure  4 . 5 - 4 .  Penurbral R e g i o n  G e o r e t r y  

if the s c a l a r  Droduct. R P, is posi t ive,  t h e  satellite is on the shadowed side of 
pimet. Vehicle -&ition with respect to Q is computed from 

R t = R -  Q* 

cosine of the angle between R and -0 is obtained f r o m  

satellite lies i n  the  penumbral region i f  cos y is pos i t ive ,  and i f  

lcos 2 l c o s  B/ (19)  

The foregoing paragraphe have deal t  with the problem of satellite shadowing Men 
Sun is obscured by the body of the object about which the satellite is orbi t ing.  
Earth-Yoon system, m o t h e r  source o f  shadowing a r i s e s ,  namely. na tura l  eclipses of the  
by one of the bodies i n  the system as seen from the o ther  body. 

In 

Fortunately. the  compli- - 
cated geometry of eclipses need not  be computed f o r  t h e  purpose o f  de t emin ing  satellite 
shadowing. 
is o r b i t i n g  t h e  ~arth ,  first a test is d e  to d e t e w i n e  whether or not the  vehicle l i es  in  

The foregoing analysis my be used to account f o r  eclipses. I f  the satellite 
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I 4-36  

t h e  Ear th ' s  shadow; if it does not ,  a second tes t  is made t o  see it i f  l ies i n  t h e  Moon's 
shadow. Similarly, for  a satel l i te  o r b i t i n g  the  Moon. first a tes t  is made to  determine i f  
t h e  sa te l l i t e  l ies i n  the  Moon's shadow; then a second tes t  is made to  determine i f  i t  l ies 
i n  t h e  Earth 's  shadow. 

I -  

4.5.4 PENUMBRAL I L L U M I N A T I O N  F A C T O R .  To a s a t e l l i t e  s i t u a t e d  i n  t h e  penumbra of  a 
planet ,  the  Sun appears as a lune formed by t h e  solar d i s c  and a limb of  t he  planet.  (This 
condi t ion is t rue ,  o f  course, only i f  t h e  sa te l l i t e  is s u f f i c i e n t l y  close t o  t h e  planet ;  i n  
t h e  l i m i t ,  as t h e  sa te l l i te  recedes from t h e  planet ,  t he  apparent diameter of the lat ter 
becomes so small that t h e  planet  appears t o  be a small speck on t h e  solar d i s c . )  
t h e  sa te l l i t e  i n  r e l a t i v e l y  close proximity to  t h e  p l ane t  is il luminated by some f r a c t i o n  of 
t h e  Sun's avai lable  radiat ion,  t h e  f r a c t i o n  being a funct ion of t h e  satel l i te ' s  locat ion 
within t h e  penumbral region. An expression f o r  t h i s  penumbral i l luminat ion f a c t o r  is 
derived i n  t h e  following paragraphs. 

Consequently, 

Consider a satel l i te  a t  an a l t i t u d e  h above a p l a n e t ' s  surface.  I n  t h i s  instance,  
"planet" means any ponderable body i n  the  solar system. 
subtended by t h e  planet from t h i s  posi t ion,  the geometry of figure 4.5-5 is used. 
diagram, it can be shown t h a t  

To compute t h e  so l id  angle 
From t h e  

u -  
( R p  t h )  

The angular area of a spherical  disc or cap such as t h e  planetary d i sc  shown i n  
f i g u r e  4.5-5 is given by t h e  quant i ty  2 n H / R  

where 

H = depth of d i s c  

R = rad ius  of sphere of which d i s c  is a P a r t  

The apparent angular area of t h e  p l a n e t ' s  d i s c  is given by 

- 2~ [ C  - ( b  + h ) ]  
C 

8, - 
Subs t i tu t ing  equations (32) and (34) i n t o  (35) y i e l d s  

(RP + h )  

( 4 )  

( 5 )  



Similarly, the s o l i d  angle subtended by 
the solar d i s c  from the same position is, 
approximately, 

i n  which R 
Sun and vehicle and Rg is the solar 
radius. 

is the distance between the 
SY 

Since RSV >> Re 

~~ 

PEBTUBBATIONS 

PLANETARY 
DISC 

PLANET 

Figure 4 . 5 - 5 .  Planetary D i s c  

Therefore, 

% 

8, = 77 [:I2 
Similarly, i f  h becomes large w i t h  respect to Rp, equation ( 5 )  may be replaced by 
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Equations (5) and (8) es t ab l i sh  the r e l a t i v e  s i z e s  of the planetary and Solar 
It now remains t o  compute the percentage obscuration of the former by the l a t t e r  discs .  

when the  vehicle’s  posi t ion is given. The geometry of t h i s  problem is shown i n  f igure 4.5-6. 
A sphere having a radius  g rea t e r  than RSV + 
center.  Two caps, representing the s o l a r  and planetary apparent angular areas ,  a re  projected 
onto the  sphere. 

is constructed w i t h  the vehicle posi t ion as 

From the diagram, 

R,, - - RSP + 

where 

R,, = posi t ion of vehicle wi th  respect t o  the Sun 

R,, = pos i t ion  of planet  wi th  respect  t o  the Sun 

R = posi t ion of vehicle w i t h  respect t o  planet 

The cen t r a l  angle between the centers  of the  caps is given by 

7l o l e  < -  2 c -  

Figure 4.5-7 i l l u s t r a t e s  the geometry of the  in t e r sec t ion  between the two caps. 
I n  order t o  s impl i fy  the integrat ion i n  computing the area of the exposed so la r  d i sc .  a 
great c i r c l e  w i l l  be passed through the two points  of intersect ion:  t h i s  c i r c l e  w i l l  be used 
t o  define one of the limits of integrat ion.  
systems are  employed: 

For the ca l cu la t ions  t o  follow, three coordinate 

a. A system ( f igure  4.5-8) f o r  the cap representing the Sun’s d isc  

b. A system for  the cap representing the p lane t ’s  d i s c  

c. A system for the great c i r c l e  

A l l  three reference frames are  taken to  have i n  common t h e  same y-axis  and center  Of 

coordinates. 
system (a)  a s  primary, t he  second system (b) is re l a t ed  t o  it by 

Figure 4.5-9 shows the r e l a t ionsh ips  among the th ree  systems. Taking the f irst  

I x f  x c o s  9 ,  - z s i n  8, 

z f  = z c o s  OC t x s i n  8, 

J 
4 - 3 8  
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Figure 4.5-7. Solar-Planetary Disc Intersection 

where 

2' is noma1 t o  the planet's disc  

and the third system by 

x f i  = I sin eG + z C O S  OC 1 
z'' = z sin 6, - x c o s  8, 

Y" = 9 
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z 
NOTE 
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Figure 4.5-8. Orientation of Solar Disc's Coordinate System 
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Figure 4.5-9. Coordinate Systems U s e d  in Computations 
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The set  of equations representing t h e  small c i rc le  of t h e  Sun's cap is 

where 

a i s  t h e  rad ius  o f  t h e  sphere 

H i s  t h e  he ight  of t h e  cap 

Eliminating z from equation (15), 

~2 t y 2  = H ( 2 a  - H) 

Simi lar ly ,  t h e  small circle of t h e  p l ane t ' s  cap is given by 

( x ' ) 2  t y 2  = H '  ( 2 a  - H ' )  

Subs t i t u t ing  equations (13) i n t o  (18) y i e l d s  

( x  c o s  0, - z s i n  B c ) 2  t y 2  = H '  ( 2 a  - H ' )  

and 

- z' ( a  - H ' )  - z c o s  Bc t x s i n  8, 

Subs t i t u t ing  equation (16) i n t o  (20)  and so lv ing  for x: 

- a (1 - C O S  0,) - ( H '  - H C O S  8,) 

xP - s i n  8, 

where 

xp = x coordinate of po in t  of in t e r sec t ion  shown i n  f igu re  4.5-8 

Solving f o r  y2 from equation (19) 
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and 

rhere 

yp and % are the  Y and z coordinates of t h e  point  of in te rsec t ion  

For the  great circle passing through t h e  in te rsec t ions  of the WS, 2" = 0, 80 that, 
from equations (14). 

X 

z 
t a n  8,= - 

Evaluating equation (24) at the  coordinates of the in te rsec t ion  point: 

a (1 - COS e,) - (H' - H cos e,) 
t a n  0, = 

(a - H) s i n  0, 

n n - - <  0 , s -  
2 -  2 

Roaa figure 4.5-6. the angular radius of the solar cap is 

Similarly. the angular  radius of t he  p l a n e t a w  cap is given by 

The range f o r  8,. the angular dis tance between cap centers  can therefore  be narromd to  

0 5 8, L (0, 6 + OBp) 

since the sum of 8 + 8 represents  the case where the  caps are a g e n t  to  each other. 
Rs Rp 
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Although i n  t h e  example selected fo r  t h e  previous ana lys i s  t h e  solar and planetary 
d iscs  intersected,  i t  is also poss ib le  t h a t  (a) they are tangent t o  each other ,  o r  (b) t h e  
planetary cap is within t h e  solar cap. 
r e l a t i v e l y  far from the  planet . )  To determine whether or not in te rsec t ions  e x i s t ,  t he  value 
of y p 2  as given in  equation (22) m a y  be used as a discriminant:  

If yp2  > 0, two in te rsec t ions  e x i s t .  

If yp2 = 0, t he  two caps are tangent, 8c = 8 + 8 

If y p 2  < 0, t h e  two caps do not  i n t e r s e c t  and t h e  obscured a r e a  is obtained by 
subtract ing t h e  apparent planetary area from the  apparent s o l a r  area. 

(The la t ter  condition arises when t h e  sa te l l i t e  is 

a. 

b. 

c. 

and there is no obscuration. 
RS RP' , 

Procedures are now developed fo r  computing t h e  percentage obscuration i n  condition a and c. 

The area indicated by t h e  cross-hatched sur face  (ARC) i n  f igure  4.5-10 corresponds 

A general  expression w i l l  now be developed for  
This  expression w i l l  then be used t o  compute the  areas of t h e  

t o  ha l f  of e i t h e r  of t h e  two lunes (figure 4.5-7) formed by t h e  in te rsec t ion  of t he  great 
c i r c l e  and t h e  s o l a r  and planetary caps. 
t he  a rea  of t h i s  surface.  
two lunes indicated in f igure  4.5-7. 

The area of t h e  over-al l  lune of which t h e  shaded area indicated i n  figure 4.5-10 
is ha l f  is given by 

where 

a is the rad ius  of t h e  sphere 

4 is the angular displacement, i n  t he  x-y plane,  from t h e  x ax i s ,  Pos i t ive  in  the  
counterclockwise d i rec t ion  

6',(+) is the angular displacement of s ide AC from t h e  z-axis,  pos i t ive  i n  t h e  counter- 

ob@) is the angular displacement of s i d e  BC from t h e  z-axis,  pos i t ive  i n  the  counter- 

clockwise d i r e c t  ion 

clockwise d i rec t ion .  

Performing t h e  f i r s t  indicated integrat ion,  

The maximum area, i .e. ,  when the  great circle l ies  i n  t h e  x-z plane, which t h i s  i n t e g r a l  
could y i e l d  is one-half of the to t a l  area of t h e  cap. 
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SMALL CIRCLE Of 
PROJECTED DISC 

Figure  4 . 5 - 1 0 .  A r e a  of Spherical Lune 

From equation (17). the expression for the small circle of the solar disc is 

x 2  + y 2  = H (2a - H) 
In polar coordinates, 

x = a sin 6 cos 4 

y = a sin 6 sin 4 
z = a cos 6 

(31) 

(32) 
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Subs t i t u t ing  f o r  x and y in  (31): 

H(2a - H )  

a2 
s i n  2 8  C O S  2 4  t s i n  2eb s i n  2 4  = 

For t h e  case of the  small circle 8 is always equal t o  8,. Therefore, 

The equation of the great circle is 

( ~ “ 1 2  t y 2  = 8 2  

Gubsti tuting from (15). 

( X  s i n  8, t z COS e,p t y 2  = aa. 

(34) 

(35) 

From (25). 

X 

z 
t a n  8, = - 

Subst i tut ion of (36) i n t o  (35) yie lds  

y 2  C O S  28, t 2 2  = a2 COS 28, 

Inse r t ing  t h e  polar-coordinate r e l a t ionsh ips  f r o m  (32): 

s i n  2 8  s i n  Q C O S  28, t C O S  28 = COS 28, 

Therefore, For t h e  great circle 6 is a function of 4, i .e. ,  8, (4). 

s i n  8, 

J i  - s i n  24 c o s  28, 
8, (4) = s i n - 1  

Using t h e  limits given by equations (33) and (39) i n  t h e  i n t e g r a l  of equation (301, 
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PEETUBBATIONS 

(2a a 2  - "I 
Rewriting equation (40). 

Rearranging t h e  in t eg ra l  i n  (38). 

Ehere 

I = sin 4 

c - sec 8, - 

'Therefore, 

M?llZ: 
4.5-10) limits it to tbe  range 0 5 
is ac tua l ly  in the second quadrant. use (40 - n/2) f o r  t he  
evaluat ion of equation (43). 

In t h e  computation of A,, t h e  de f in i t i on  of t$,, ( f igure  
5 n/2. Therefore. if 4o 

( 4 0 )  
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From f igure  4.5-10, i t  is evident t h a t  

- XP 
c o s  'o - 

J x p 2  + y P 2  

where + and yp are  obtained from equations (21) and (22). respectively. 
is taken for  t h e  square root when computing yP. 

The pos i t ive  sign 
~ In  addi t ion ,  

For the planetary cap, 

= 2a2  s i n - 1  b i n  4of c o s  eGfJ - 2a ( a  - H') 
where 

X f  
tan 8,' = - 

ZI 

( 4 7 )  

( 4 8 )  

and +of is l imited,  f o r  t h e  evaluation of  equation (471, t o  values  between 0 and 771'2. 
Taking the values of t he  in te rsec t ion  point  from equations (21) and (23), and transforming 
them t o  the  planetary cap's coordinate system (XI,  y' ,  2') by equations (13), 

- (H - H' COS 8,) - a (1  - COS O c \  
t a n  - 

( a  - H') s i n  OC 

x p  c o s  8, - ( a  - H) s i n  8, 

.]HI ( 2 a  - H I )  

c o s  cpol = 

( 4 9 )  

( 5 0 )  

( 5 2 )  
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PERTURBATIONS 

F ' r a  t h e  geametm of t h e  l n t e l a e c t i o n  of the solar rad planetan caps ( f igures  4.5-7 through 
4.5-91, It CIIl be sharn that the ef fec t ive  projected area of the solar cap. &. varies with 
the  quui r rn t  of cpo and $o' in the m e r  shown i n  table 4.5-1. 

Table 4.5-1. Table for Computation of ASC 

I I I 

First 

Second 

Second 

Second 

F i r s t  As 

I F i r s t  2nsH-As 

The area o f  t he  exposed solar-disc Is given by 

The f o r m i n g  ca lcu la t ions  have been made on the  basis of a sphere of radius  a; these r e s u l t s  
are now nomalized by s e t t i n g  a = 1. Normalizing the  remaining quant i t ies ,  

The penumbral i l lumination fac tor  is computed from 

AE X p = -  

8s 
For the caae where yp2 0. the  i l luminat ion f a c t o r  is computed from 

OP 

OP * 

P = l -  

( 5 6 )  

(57) 
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S E C T I O N  5 
S T A T I S T I C A L  COMPUTATIONS 

5. I INTRODUCTION 

The primary function of an o r b i t  determination program i s  ti:  l'nFputP a best  
es t imate  of spacecraf t  posi t ion and veloci ty  from observations.  
t h e  meaning of "best  estimate" is defined i n  some s t a t i s t i c a l  sense as for example, n i n i -  
num variance o r  least squares. Used as a s c i e n t i f i c  t oo l .  ;he brogram rm a lso  update 
s t h a t e s  of biases occurring i n  the  dynamic and observational models. 

I n  raking these computations 

Statistical esthates are obtained f o r  t h e  l inear ized components n f  t h e  s t a t e  . 
The most,elementary state vector is composed of the s i x  elements e:wn by [6R SR] . 

I n  
vtctor .  
i n  which SR and 6R represent  d i f f e r e n t i a l  displacements from sow nomjnal t ra jectory.  
practice. t h e  in f in i t e s ima l  d i f f e r e n t i a l s  are replaced by f i n i t e  increments, so t ha t  

[AR ARIT 2 [ 6 R  S R ]  

!..- ing more compact notat ion t o  represent the state vector.  let  

L,nearization is a l s o  applied to the observations. For each data  time. an ohservation is 
roaputed from t h e  corresponding point  on the nominal t r a j ec to ry .  A vector of observation 
--:duals is formed from 

fiere . 
ocoIlp i s  t t e  v e c t o r  of  computed o b s e r v a t i o n s ;  

o,,, is t h e  v e c t o r  of a c t u a l  o b s e r v a t i o n s .  

T r  lpnns  of these de f in i t i ons ,  statistical processing entai  Is i n fe r r ing  L h  given the 
components of Ay. 
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ANALYTICAL B A S I S  

For a l l  types of Statist ical  estimation i n  which linearized variables are employed, 
@, the s ta te  transition matrix;  Y, the matrix of observation three important matrices occur: 

partial derivatives: and P, the variance-covariance (usually called covariance) matrix of 
the s ta te  vector components. For the s ta te  vector of equation (2 ) ,  the transition matrix 
relates the s ta te  a t  time t t o  the s ta te  a t  time to: 

The matrix M describes the deterministic relationship between small changes i n  the s ta te  
vector and the corresponding changes i n  the vector of residuals: 

A f u l l  treatment of t h i s  matrix is given i n  paragraph 6.3. 
matrix, its structure is an array of elements given by: 

Turning finally to  the covariance 

P =  

p x  
. . .  

. . .  

where 

ai2  = t h e  va r i ance  of t h e  i th  component 

- 
P i j  - P j i  = t h e  c o r r e l a t i o n  f a c t o r  between t h e  i th  and  j t h  

components. 
a n d  x j  i s  t h e  same a s  t h e  c o r r e l a t i o n  between x j  
and x i ,  t he  covariance matrix i s  symmetrical .  

Because the  c o r r e l a t i o n  between x i  

BY aW3ItIenting the s ta te  vector, it is possible to obtain eatinntea of dynsmical 
and observational biases. Dynamics1 biases are those parameters which influence a vehicle's 
orbital motion, and include biases i n  a l l  gravitational quantities and i n  the thrust profile 
of the spacecraft. Observational biases, on the other hand, include those parameters such 
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STATISTICAL COMPC'tTIOYS 

as unce r t a in t i e s  i n  s t a t i o n  loca t ion  or i n  the speed of l i g h t  which corrupt  the data and 
cont r ibu te  t o  errors i n  the  knowledge of t he  vehic le  s t a t e .  Both c l a s s i f i c a t i o n s  of bias 
fire processed i n  t h e  same manner in  the  statistical estimation procedure. The form of  t h e  
:imented state vec tor  is 

= [6R S R  88, 6Bo! T 
x. ( 7  

in  which 88, is a vec tor  of  dynamical b iases  and 8Bo a vector of ohservational biases. 
These b i a s  parameters have also been l inear ized ,  so tha t  68, and 6Bo represent  d i f f e r e n t i a l  
o f f s e t s  frola a set of nominal values. 

For 8x,. t h e  state t r a n s i t i o n  matrix becomes 

to) = 

I 

I 

I 

I 
I 

I 

f 

- 

- -  
I 
I 
I 

'd 
- -  

The p a r t i t i o n  @(t. to) is defined by equation (4) .  
r . " i f f e r e n t i a l s  of posit-ion and ve loc i ty  t o  6Bd. 
' . i t i t i on  has dimension 6 x 4 ,  and r e l a t e s  posi t ion and ve loc i ty  t o  t h e  observational biases. 
;Inensions k and 4 are t h e  number of  dynamical parameters and the  number of  observat ional  
;w-ameters, respect ively.  The 
wna in ing  n u l l  matrices show that no r e l a t ion  e x i s t s  between t h e  two c l a s s i f i c a t i o n s  of  
l'ias, o r  between t h e  b iases  and &. 

Qd(t .  to) is a 6 x k matrix r e l a t i n g  
The nu l l  matrix i n  t h e  upper r i g h t  

Id is a k x k un i t  matrix and Io is an 4 x 4 u n i t  mat r ix .  

Overall dimension f o r  @)B(t. to) is (6 + k + 4 )  x 
6 + k +.e). 

Similarly, t h e  bl matrix is expanded to  be compatible w i t h  t h e  augmented state 
vector: 

H i t )  is defined by equation (5): t h e  n u l l  matrix relates the  dynamical biases t o  the  obser -  
vatiofis and has dimension n x k; Y o ( t )  is a matrix of partial der iva t ives  r e l a t i n g  the  
observational b i a ses  to AY and has dimension n x 4.  The quant i ty  n is t h e  number of obser-  
va t ion  types. 
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Augmenting t h e  covariance matrix, 

- 
p* - 

I - I 

’ I ‘Xd 1 ‘XO 
- - - - I  ----- 1 - -  - -  

1 I 
’dX I ‘d ‘do 

_’OX I ‘od I ‘ 0 -  

I 
-1- - ---+ - - -- -- - 

I 

(10)  

where P is defined by equation (6) ,  and Pd and Po are the covariance matrices for the dynam- 
ical  biases and observational biases, respectively. 
P, is 4 x 4. 
tween h and the dynamical parameters, between AX and the observational parameters, and be- 
tween the two types of parameters themselves. P, is synnnetric and has dimensions (6 + k  +.e) 
x ( 6 + k + 4 ) .  

P has dimensions 6 x 6: Pd is k x k ;  
n e  partitions pXd, pX0, and Pdo contain, respectively, the covariances be- 

5 . 2  THE GODDARD PARAMETERS 

Reference 16 shows tha t  differential correction matrices computed for s t a t e  vectors 
l ike &C became singular a f te r  a relatively short time. I t  is further shown i n  the reference 
tha t  the optimum set of variables is one in  which only one component in t h e  set depends upon 
the energy of the orbit. Such a se t  has been developed, and, i n  t h i s  Program, the vehicle 
s ta te  is described by s i x  quantities called the  Goddard (or a) parameters. 
tion matrix @(t, to) is replaced by the parameter transition matrix y( t ,  to), the  matrix 
of observation partial derivatives U ( t )  becomes the array of derivatives N ( t ) ,  and the s t a t e  
variable covariance matrix P ( t )  is transformed into the  parameter covariance matrix Ut).  

The state transi- 

The s i x  differential a - parameters are  defined as follows (reference 17): 

h,: 

Au2: 

Au3: 

a small r o t a t i o n  of,R about R i n  such a way 
as t o  keep R R a c o n s t a n t .  

a small r o t s t i o n  o f - R  about  R i n  such a way 

a small r o t a t i o n  of R and R s imultaneously 

as t o  keep  R R a c o n s t a n t .  

about H = R x k ,  t h e  angu la r  momentum 
vec tor .  

h4: a small change i n  l / a ,  where a is t h e  major 
semiaxis  of t h e  o s c u l a t i n g  two-body o r b i t .  
T h i s  parameter is t h e  o n l y  one of  t h e  a e t  
a f f e c t e d  by energy. 
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bus: 

Ih,: 

a small c h a n g e  i n  R. t h e - m a g n i t u d e  of  R, 

a small c h a n g e  i n  R R c a u s e d  b y  a small 

s u c h  t h a t  a and R R r e m a i n  i n v a r i a n t .  

r o t a t i o n  of  R a b o u t  H. 

The first th ree  d i f f e r e n t i a l  parameters leave t h e  shape and size of t h e  orbit invar ian t  and 
change only its or ien ta t ion  in space, whereas t h e  last th ree  affect t h e  o r b i t a l  configura- 
tion. 

To use t h e  u - parameters in statistical estimation. it is necessary to es t ab l i sh  
t h e i r  re la t ionship  with t h e  cmren t iona l  state vector h, and then to es t ab l i sh  r e l a t ions  
between @ and 'Y. 1u and N. and between P and Q. The fundamental transfonnation is 

A X = s A f t ,  (11 1 

a being the vector  of d i f f e r e n t i a l  parameters. Ry def in i t i on ,  t h e  pameter t r ans i t i on  
~ a t r i x  relates t h e  new l inear ized  variables at two d i f f e r e n t  times: 

&(t)  = P ( t ,  to) &(to) (12) 

&tween 'ry and @. t h e  following transformation exists: 

@(t ,  to) = S ( t )  'Y(t. to)  s - 1  ( to ) .  

mvartance matrix for the  parameters, Q, is re la ted  to P by 

P ( t )  = S ( t )  Q(t )  ST ( t ) .  

- - - f  t h e  matrix of observation partial der iva t ives ,  N, is re l a t ed  to  M by 

N ( t )  = M ( t )  S ( t ) .  

Augmentation of t h e  transformation matrix S is simply 

(13) 
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where S is defined by equation (11).  The inverse of Sa is 

The matrix S is a point  transformation entirely expressable i n  terms of spacecraft 
position and velocity a t  some time. 

s =  

. 
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* 

i 

I n  equations (18) and (19). 

It is a~slned in the Program that a two-body s ta te  transition matrix is s u f f i -  
c ien t ly  accurate for s ta t is t ical  estimation. 
closed fom. 

 nth this assumption, rY may be expressed i n  

0 

where f and g, ? and i are functions describing motion on a Keplerian orbit as defined by 
equations (1) and (2) of paragraph 3.2.2. The subscript "0" identifies quantities pertain- 
ing to the i n i t i a l  time to; a l l  other quantities are associated with the time t. 
closed-form f o m l a t i o n  is coaputationally mre convenient than having to calculate the 
elments of @ from the variational equations or  by the secant method. 

This 
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Do F 2  [ ( F 3 ) 2  i- 8 2 3  
R,(F3)3 J7 

t 

I i- P2 ( -  3 F6 i- F 5  - F1 F 2  i- ( F 2 ) 2  i- F y  ( F , ) 2 )  

. 

(23) 

F 4  + R, V O 2  H2 R, V, 2 [I - 

' Do 

- Do]] 
- _ -  

'3, 6 
R, V 2  

( 2 4 )  

1 D o 2  P a  
t- sq +- sg  ' p4 '6 

P 
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STATISTICAL COlPUTATION 

1 

6 
- 

a '6 F1 - - -  

F s = l  - a F ,  

F 4 =  1 - a F 2  

a 

i - 0  

a 

i -0  

X 2  =- 
a 

where X is Herrick's variable (proportional to differential eccentric anomaly). and a is the 
major semiaxis of the orbit. The remaining functions are defined 88 follows: 

E, - - F2 Fs 
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1, = - 3F1 - 3F5 - 2 ( F 2 )  2 
2 

E A i  - K Ay, 

and the covariance of t h i s  e r r o r  is the  expectation of €eT: 

I P = 

F5 3F, 

2 2 F 1  * F 2  
1, = -  - - - 

I 5-10 

- 
S 2  - F2 F g  

- F 1  F1 F3 

s4  - F5 - 2 -  2 

s5 = c, 

5 . 3  MINIMUM VARIANCE FILTER 

( 3 0 ~ )  

K being the optimal filter. The er ror ,  E ,  i n  the est imate  is 

Having avai lable  the necessary l inear ized observations,  s ta te  vector,  and the 
associated matrices e, M. and P (or P, N, and Q), by what means sha l l  a s t a t i s t i c a l  estimate 
of the s t a t e  vector components be obtained? One important es t imator  is the minimum variance 
f i l t e r ,  f o r  which the optimum estimate is expressed by 

( 3 3 )  

( 3 4 )  
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Since the variances of t h e  ermr components are given by t h e  -race of P. a m i n i m  variance 
estimate is obtained by solving f o r  those cmponents of & which minimize t r (P) .  Following 
Bat t in  ( reference 18). 

&Z = d E(eT € 1  = d [ t r ( P ) I  = t r  [d PI ( 3 5 )  

where "tr" indica tes  trace. Subs t i tu t ing  (33) and (34) i n t o  (35) and s e t t i n g  d equal t o  
zero, 

dcr2 = t r  { d [E(& A?T) -E(& AyT)KT - K E(AY AGT 

or. 

E u a t i o n  (37) must be valid for arbitrary d KT; consequently, 

K = E(& AyT) [E(AY AyT)l -' ( 3 8 )  

To evaluate  E(& AyT), consider the re la t ion  

Ay = n A? + e (39) 

where M is the  matrix of partial der iva t ives  r e l a t i n g  the observations t o  t h e  state, and e 
is t h e  vector  of errors i n  t h e  sensors. Then. 

E(& byT) = E(& Ai?) Y~ = P M~ 

Using equation (39) again, E(& AyT) may be cuuputed: 

E(Ay byT) = MPMT + E' 

Hence, t he  optirrmm f i l ter  is given by 

K = P UT [MP Mf t E']-' 

Elnploying the Gaidard parameters f o r  statistical updating. 

( 4 0 )  

!41! 

( 4 2 )  
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. 
A i  = L Ay 

In the minimum variance procedure, data  a r e  processed sequent ia l ly ,  i .  e. , one data 
point a t  a time. There m a y  be several  observations a t  a data p o i n t ,  h u t  they a r e  a l l  s i m u l -  
taneous. The estimate of the s t a t e ,  therefore ,  depends upon a p r i o r i  knowledge of the s t a t e  
and i ts  covariance matrix a t  some i n i t i a l  time, and upon the data  gathered between t h a t  time 
and the last data point. 
conventional s t a t e  var iables  r a the r  t h y  the a -parameters. 
iance matrix is P( t , ) ,  and t h a t  Ro and Ro a r e  known. 
occurs a t  t l .  
to t o  t l  w i t h  Ro and R, a s  i n i t i a l  conditions. 
of the s t a t e  t r a n s i t i o n  matrlx: 

Consider a typical  minimum variance sequence u s i n g ,  for  convenience. 
Assume t h a t  a t  t.,, the covar- 

Assume a l s o  t h a t  the f i r s t  data  point. 
Posit ipn and veloci ty  a r e  updated by in t eg ra t ing  the equations of motion from 

Between data  points ,  P is updated by means 

The matrix P ( t , )  is used i n  equation (42) t o  obtain the optimum f i l t , e r .  which, i n  t u r n ,  is 
used to  ca l cu la t e  the  optimum estimate of the s t a t e  from equation (32).  
t h i s  matrix is computed from 

A new value f o r  

t 
P ( t , )  = ( I  - KM) P ( t , )  ( 4 5 )  

where I is a u n i t  matrix of proper deminsionallty, and where the minus and p l u s  supe r sc r ip t s  
r e f e r  to  instants j u s t  before and j u s t  a f t e r  the processing of  data ,  respectively.  Time t l  
now becomes the i n i t i a l  point  f o r  the updating process,  and the s t e p s  just out l ined a r e  re-  
peated. Equation (44) may be derived by computing t h e  expectation of h(t) u s i n g  the updated 
1 inearized s t a t e  vector 

Equation (45) is obtained hy forming the expectation of E ,  whrre e is given hy ecluatlon ( 3 3 ) .  

Minimum variance estimation is espec ia l ly  useful i n  e r r o r  analyses. I n  t h i s  a p p l i -  
ca t ion ,  a nominal t r a j e c t o r y  is specif ied together w i t h  da t a  points  along the o r b i t .  
i n i t i a l  estimate of the covariance matrix is needed as well as a measure of  t h e  data  qua l i t y  
a t  each point.  
(44) between data times, and equation (45) a t  a data  time. No real data  a r e  required and no 
observations need be computed. 

An 

The matrix P is then propagated from data  point t o  data point.  u s i n g  equation 

I n  an e a r l i e r  version of t h i s  Program, an e r r o r  ana lys i s  mode was developed i n  

Between data  points ,  
which P, the covariance matrix of hx, is propagated, h u t  i n  which the e f f e c t s  of dvnamical 
and observational biases  on P a r e  accounted for by a d d i t i v e  terms. 
then, equation (44) becomes 
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i : i  *hich Qt,, to) is a lPatrix dependent upon the dynaraical biases. 
:s updated by 

A t  a data point ,  P 

+ - 
~ ( t , )  = ( I  - KM) wt,)  + r(t l) ,  ( 4 8 )  

where nt,) is a matrix depending upon both the  dynamical and observational biases. 
its employment i n  error analyses, t h i s  technique has also been used f o r  processing data where 
i t  is important to  account for t h e  effect of biases but  no t  necessary to compute t h e i r  
values. 

Besides 

5.4 BAYES' ESTIMATION 

Consider t he  n o m 1  equations i n  the classical leas t - squares  formulation: 

y1 Ax, = Ayl - e, 

y2  Ax, = Ay2 - e2 

( 4 9 )  

m, Ax, = hyp - e, 

drd ina r i ly .  i n  orbi t  determination. each equation in t h e  set  obta ins  at  a given time so t h a t  
+ne  p measurements may be considered data points  i n  the .  
2 Components; t h e  dimensions of ha, on tie o the r  hand. are (6 + k f 4 x I. cbEpieSSir;r 
equation (49) i n t o  campact notat ion,  

Each vec tor  Ay, contains  up t o  

B Axa = Ay - e (50) 
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whr re 

B [ M I T  M 2 T  - - M P T  I T  

For l e a s t  squares, the optimization c r i t e r i o n  requires  the choice of components f o r  .’ha 
whlch minimize the s c a l a r  

Taking p a r t i a l  der ivat ives  of e2  w i t h  respect t o  the components of  ha and s e t t i n g  the re- 
s u l t  t o  zero: 

where the operator vx implies  taking the gradient i n  the vector space defined by ‘bas Sinw 

equation (53) s t a t e s  t ha t  the sum of a vector and i t  t rans1,)sr  art’ m:n C o ~ ~ s r q l i s n t l y .  1 i i i *  

vector i t s e l f  i s  i den t i ca l ly  zero: 

BT B Ax, = B T  Ay (54h) 

The optimum estimate i n  the least-squares  sense is, then, 

The least-square estimate of equation (55) makes no use of a p r i o r i  1nfOrmatlon. 
I n  o r b i t  determination, such information is usual ly  a v a i l a b l e  i n  the form of an i n i t i a l  
~ ’ o v a r l m c e  matrix, and the  Program can employ this matrix i n  a least square calCUl8tiOII 

11 (4 Bayes’ estimation. One form of Bayes’ theorem r e l a t e s  t he  conditional p robab i l i t y  
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d i s t r i b u t i o n  of the i n i t i a l  state, given the  data, to the condi t ional  probabi l i ty  d i s t r i -  
bution of the  data, given the  i n i t i a l  state, and t h e  d i s t r i b u t i o n s  of t h e  data and t h e  
i n i t i a l  state: 

In equation (56). cu<,(O) is t h e  i n i t i a l  state vector. The optimization c r i t e r i o n  is again 
the minimization of e2; expressing this minimization i n  terms o f  Bayes' theorem requires 
f inding the components of bC, (O)  which correspond t o  the  mean of the  condi t ional  d i s t r i b u -  
t ion  p(Lha(O)/Ay). Since t h e  d i s t r i b u t i o n s  are assumed to  be Gaussian, t h e  d i s t r i b u t i o n  of 
t h e  i n i t i a l  state, within a mul t ip l ica t ive  f ac to r ,  is 

1 

2 
p(Ax, (o) )  = e x p  --{Ax,~(o) P - ~ ( o )  Ax,}, (5' l  ,I 

P 0) being t h e  covariance matrix of &,(O). To f ind  p(Ay), write equation (50) as 

Ay = B Q, Axa(o)  + e. (58) 

where 

." 

LiLh Qi is t h e  state t r a n s i t i o n  matrix from t = to t o  t = ti. 
Ay is t h e  expectation 

The covariance matrix for 

ii.*iice, within a mult ip l ica t ion  factor, the d i s t r i b u t i o n  o f  AY is 

The condi t ional  d i s t r i b u t i o n  of hy given h , ( O )  is simply proportional to  t h e  d i s t r i b u t i o n  
of t h e  observational errors: 

1 - 1  

2 
p(Ay/Ax,(o)) = e x p  --{eT (e2)  e) ( 6 2 )  

5-1s 



ANALYTICAL BASIS 

Subs t i t u t ing  equations (57). (61), and (62) i n t o  equation ( 5 6 ) ,  

1 

2 
~ ( A x , ( o ) / A ~ )  = e x p  --{Ax,T(o) P - ~ ( o )  A ~ , ( o )  t e T ( e 2 ) ' e  - A ~ T  Y - 1  A Y ) .  

( 6 3 )  

Subs t i tu t ing  for Y fm equation (60), 

The optimal estimate f o r  k , ( O )  is t h a t  vec tor  which gives  the  mean valiw of p(h,(O)/Ay): 

In  t h e  Program, P'(0) and D are computed recorsively from the followine formulae: 

D, = D , - l  t a i T  B~~ A y , ,  

D being defined by 

D, = D~ Ay ( 7 0  I 

A t  t h e  last  poin t  in  the  da ta  batch,  [Pi ' ] - '  is inver ted  and mul t ip l ied  i n t o  D,, t o  g i v p  thc. 
optimal estimate of t h e  s t a t e :  

Ai(0) = p P '  D~ ( 7 1 ' )  
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Equation (67) gives the  updated estimate of t he  i n i t i a l  state vec tor  and equation 
(65) gives the  updated estimate of t h e  i n i t i a l  covariance matrix. The problem arises, then, 
of ob ta in ing  updated estimates of P and &,, a t  some o the r  time, given the i n i t i a l  estimates. 
Elements of  t he  s t ? t e  vector per ta in ing  to  dynamical and observational biases are cons tan ts  
and so are invar ian t  i n  time. To obtain updated estimates of posi t ion and veloc i ty ,  one may 
use the  optimal estrmates of the  i n i t i a l  condi t ions to  in t eg ra t e  forward to  any desired time 
point ,  or less accurately, the  d i f f e r e n t i a l  elements of t h e  i n i t i a l  state vector  m a y  be 
t r ans fe r r ed  forwarc! by t h e  state t r a n s i t i o n  matrix. As shown by equation (44),  t h e  covari-  
ance matrix may also be updated by means of  the  t r ans i t i on  matrix. 
no te  t h a t  i f  t h e  elements of [P(O)]-' are s e t  equal to zero, the  r e su l t i ng  estimate is exactly 
t ha t  given by a weighted least-squares  regression. 

It  is in t e re s t ing  to  

Another type of mest estimate employs recursive ca lcu la t ions  which give updated 
estimates of ha and P a t  each data time. In t h i s  procedure, t h e  size of the  data batch is 
l imited to  one da ta  point. The covariance matrix is computed from 

P ' ( t )  = P ( t )  - P ( t )  aT MT [MP(t)MT f e a ] - '  M@P(t), 

and the  optimal est imate  of t he  state vector from 

This recurs ive  form of mest estimate has  been shown to be equivalent  to t h e  Kalman f i l t e r  
{ reference  19). The equivalency, however. does not imply tha t  t he  computational methods 
are the  same, as can be seen by comparing equation (73) with equations (32) and (42). 

5 ;  5 B I A S  ERRORS 

Augmentation of t h e  state vector and its associated matrices to  accommodate dynam- 
ical and observational biases has  been discussed i n  paragraph 5.1. 
paragraph to t abu la t e  the biases included in  t h e  program and to descr ibe some of the  calcu- 
l a t i o n s  pecul ia r  to the  est imat ion of these parameters. 

It  remains fo r  t h i s  

The dynamic biases determined by the Pmgm are the .;?ce?%xdntLes in  the 
f d l  lowing: 

0 Products of the universal  g rav i ta t iona l  constant and the  masses of the  Earth.  
Sun, Moon, Mars, Venus, J u p i t e r  and Saturn 

0 Area-to-mass ratio used in computing rad ia t ion  pressure 

0 Magnitude o f  t h e  solar f lux  

0 Area-to-mass r a t i o  used i n  computing a i r  d rag  

0 The lunar  grav i ta t iona l  coef f ic ien ts ,  A. B and C 
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0 Twenty-four o f  the E a r t h ' s  g rav i t a t iona l  c o e f f i c i e n t s  of the type Cl l , , ,  

8 Fifteen of the E a r t h ' s  g rav i t a t iona l  c o e f f i c i e n t s  of the type Sn,,, 

0 Eighteen c o e f f i c i e n t s  describing t h r u s t  accelerat ion 

0 The s t a r t i n g  and ending times of a t h r u s t  period 

The observational biases  determined by the Program are  the unce r t a in t i e s  i n  the 
fo l  lowirr g: 

0 Geodetic net correct ions,  h, Av and Aw 

0 Stat ion o r i en ta t ion  angles, be. be,,, Aev 

8 Parameters of the r e f r ac t ion  correct ion model: 

index of r e f r ac t ion  a t  the Ea r th ' s  surface;  
"0' 

h, a l t i t u d e  above Earth; 

a l t i t u d e  of bottom of F2 layer ;  ho* 

h,, a l t i t u d e  of maximum density of  F2 l ayer ;  

po, maximum electron density of F2 layer.  

0 Measurement t iming ,  ht 

o The velocity of l i g h t ,  hc. 

The pa r t i t i on  G d ( t ,  to) (see equation ( 8 ) )  of the  augmented s t a t e  t r a n s i t i o n  
matrix is obtained by means of t h e  secant method. This p a r t i t i o n  is composed of elements 
which r e l a t e  the d i f f e r e n t i a l s  of posi t ion and ve loc i ty  t o  the d i f f e r e n t i a l  dynamic hiases .  
Consequently, numerical de r iva t ives  a r e  computed because the var iables  a r e  not re la ted by 
a d i f f e r e n t i a b l e  ana ly t i c  expression. 

Paragraph 6.3 contains the p a r t i t i o n s  f o r  augmenting the M matrix. 
i n  the observations a r e  added to  the computed ohservations of paragraph 6.2. 

Uncertaint les  

5 .6  POWERED FL I GHT PARAMETERS 

5 . 6 .  I OEWERAL. As developed i n  psragraph 3.4 ,  a nominal t r a j e c t o r y  is computed d u r -  
i n g  powered f l i g h t  from the  time s e r i e s  solut ion to  equation (3) of t h a t  paragraph. 
obtain t h i s  solut ion,  i t  is assumed t h a t  the t h r u s t  acce le ra t ion ,  P,, is expressible  as a 
polynomial i n  time. I n  processing data  during a t h r u s t  period, unce r t a in t i e s  i n  the charac- 
t e r i s t i c s  of t h e  thrust  polynomial a r e  included as  bias s t a t e s .  These c h a r a c t e r i s t i c s  a r e  
the time of the  s t a r t  of burn, the time of  the end of burn, and the  c o e f f i c i e n t s  O f  the 
t h  ma t accel e r a  t ion PO lynomia 1. 

To 
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STATISTICAL COMPUTATIONS 

It is assumed t h a t  t he  state t r ans i t i on  matrix of t h e  nominai t r a j ec to ry  is a 
s u f f i c i e n t l y  close approximation t o  the  t l v e  t r a n s i t i o n  matrix so t h a t  s e n s i t i v i t y  coe f f i -  
c i e n t s  computed from t h e  time series solut ion may be used f o r  statistical computation during 
powered f l i gh t .  
elements of t h e  Fi-.',e vector ,  t he  state t r ans i t i on  matrix m a y  be par t i t ioned  i n  t h i s  manner: 

Using only the  vehicle  state nnd the  t h r u s t  polynomial coe f f i c i en t s  as 

The p a r t i t i o n  9 conta ins  tews of the  form hi(t)/rdxj (to), t h e  xi representing components 
f vehic le  pos i t ion  and veloci ty .  Each augmented p a r t i t i o n  @('), , contai-s 

i a r t i a l  der iva t ives  relating t h e  xi t o  t h e  coe f f i c i en t s  of the  th rus t  polynomial. 
f lr example, has tenus of the  form &,(t) h0, &,(t)&?o, hi(t)/aYo. 
relates the  x i  t o  t h e  start of burn so t h a t  its components are &,(t)/a tb. 
f l i g h t ,  the  last partition, Gpcr),  relating the  xi to the  end of bum, is zero. 
p le t ion  of powered f l i g h t ,  its elements have t h e  form a x , ( t ) / a  ti' 

($'? 
The p a r t i t i o n  icb' 

During porered 
A t  t h e  com- 

Because of size l imi t a t ions  within t h e  program, t h e  number o f  b iases  to be updated 
Each of the  @'), k = 0, 1, 2. , 5 are 6 x 3 arrays, 

The par t i t , ion @ is 6 x 6. The nu l i  
has been r e s t r i c t e d  to twenty. 
whereas both @(b) and @('I are 6 x 1 column vectors .  
matrix i n  equation (74) is 20 x 6, and the iden t i ty  matrix I is 20 x 20. 

5 . 6 - 2  THE T R A N S I T I O W  M A T R I X  @(t,  to) .  T a h l e  5-1 lists the  elements of  t he  
'coh~exltional" s t a t e  t r a n s i t i o n  matrix by which t h e  components of  t he  vehicle  s t a t e  a r e  r e -  
l a t e d  t o  t h e i r  i n i t i a l  values. S ince  the three elements of each lower half-column are the  
time de r iva t ives  of  the  th ree  corresponding elements i n  the  upper half-column, only eighteen 
sets of coe f f i c i en t s  need be  computed. T y p i c a l  coe f f i c i en t s  are l i s t ed  i n  table 5-2. 

To compute the  coe f f i c i en t s  of tab le  5-2, take de r iva t ives  of equations (18). 
paragraph 3.4.2,  with respect t o  x j (0) ,  where 

l -  
x p )  = Yo 
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a; 
a x ,  (0) k -  

aak+2 

2 2 x  , (0) 
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;:pica2 Coefficients for the State Transition Matrir, @(t, 0) Table 5 - 2 .  

Column 1 Column 2 Column 3 Column 4 Column 6 Column 5 

%2 %t2 3% t 2 t 2 
aio 

2 

ai , 

acnt2 

ai, 

t 2 

3 x 0  

2 

rhere S i j  is Kronecker’s delta.  In addition, 

.- 

1 

Since 
a D = R, 

( 8 2 )  
1 - do - - 

RO 
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ANALYTICAL BASIS 

then 

and 

or 

5 . 8 . 3  
@(k) have dimensions 6 x 3. 

THE AUBMENTED STATE TRANS 1 T I  ON WATR I X .  The matrices of partial derivatives 
A mica1  matrix of this type may be written as follows: 

ax - ax - 
a ak a Pk 

az az 

a i  a; 

ai - a i  - 
? ak a @k 

a Yk 

a i  

a; 

ai 

- 
a yk 

- 
a yk 

- 
a ''k, 

( 8 7 )  



Since 

a Ro 
- =  0 
a ak 

the f lmt 001- 16 dmn by 

a a , ' / I  a a ,  

m-o 

m 
acm+2 

.*O 

STATISTICAL COBPUTATIONS 

(88) 
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ANALYTICAL BASIS 

Column 1 Column 2 

aam + 2 aam+2 

a Qk a ?k 

- 

+ 2 + 2 

a d k  a $k 

acm+2 2 

a ak a Pk 

Ernnnainnc fcr +he ZPZZZ:! ZE< t X i - d  cuiumns are stmllar. 
transition matrix, the three elements in the lower half-column are  t h  time c!erivutlve:, < i f  

the corresponding elements in the upper half-column. 
of elements need be computed as shown in table 5-3. 

As in t he  ' c r ~ n ; ~ ? n t i r ' n a l '  stakr' 

For each valut- u f  k ,  o n l y  niaa se ts  

Column 3 

2 

+ 2 

2 

a y k  



STATISTICAL COIPUTATIONS 

Let cki be ak. Pk, yk such that 

Then 

In addition, 

and 

1 P 
- + . - j  
2 

- 

+ d.-j-p 
a 5,' a c k i  DD (93) 
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- -  - 0  
a D O  

- -  - 0  
aD 1 

a 6 k i  

For the coefficients of the second row: 

(95) 



S T A T 1  STICAL CONPUT AT I O N S  

Finally, for the third row, the coefficients are: 

- L L  

(a + 1) (E + 2)  + cJ 
a d B - j  -1 apk (98h! 

The components of @(b) are obtained by translating timing errors a t  the start of 
bum i n t o  errors in the in i t ia l  conditions by 

't, = ;o 6t,. 
ai 

--• "io - 
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ANALYTICAL B A S I S  

Conseouentlp 

- -  
;0  

i 0  

i0 

.. 
x O  

Y O  

_= 0, 

.. 

.. 

where @ is  the matrix defined i n  t a b l e  5-1. A s imi lar  
except that  the conditions at the end of bum are used 
puted for the period following the thrust interval .  

formulation holds true 
for the i n i t i a l  state, 

( 1 0 2 )  

f o r  
and @ is  com- 



l -  SECTT9N 6 

COMPUTATION OF OBSERVABLES 

6. I IIITROWCTIOI 

6.1. I 
obsenotion m e ,  of which 23 have been specified. 

O I S E R V A T I O I  TYPES. Rovieioa has been d e  i n  the Program for a total of 25 
These observations include: 

A z i . n t h , A  

b. Elevation, E 

C. Rormd-Mphm, p' 

d. Range-Rate, fi 
e. b u r  Angle, h 

f. Declination , 6 

g. 4 Directim Cosine 

h. a Direction Casine 

I. X - Angle 

j .  Y - Angle 

k. Range Equivalent, At 

1. ~ a a g e - ~ a t e ~ q u i v a h t ,  At' 
ut. Vehicle Bcculrtfm Tihe, Tocv 

n. One-UaJ Doppler (nsre) 

0. ho-Uay Coherent Doppler (-1 

p. h 0 - W ~  Non-Coherent Pseudo-Doppler (Dau) 

Q. Radar Altioeter Ranging. H 

r. Stadiometric Ranging 

s. Angle Between the Reference Body and Another Planet 

t. Angle Between the Reference eods and a Star 

6- 1 



ANALYTICAL B A S I S  

u. Angle Between a Landmark :: 2%; 

v. Angle Between Two Landmarks 

w. S t a r  Occulation Time, TOCS 

LOCAL 
VER TI C A L 

6. 1 . 2  DEFIN IT IONS OF THE MEAS- 
UREMENT 

6 .  1 . 2 .  I A z i m u t h ,  A ,  and E l e v a -  
t i on , E .  Azimuth is measured eas t e r ly  
from s t a t i o n  north, from 0 t o  2rr. Eleva- 
t ion is measured from the s t a t i o n ' s  
horizontal  plane, pos i t i ve  upward, wi th  
a range f 77/2. See f igure 6-1. 

- 
e 

6. I .  2 .  2 Round-Tr i p Range, p' . 
The round-trip range, p ' ,  is twice the  
dis tance from the s t a t i o n  t o  the vehicle. 

6. 1 . 2 . 3  Range-Rate ,  b ,  Range-rate, F i g u r e  6-1  A z i m u t h  and E l e v a t i o n  
>, is the time der ivat ive of the magnitude 
of the vector from the s t a t i o n  t o  the 
vehicl  e. 

6. 1 . 2 . 4  H o u r  A n g l e ,  h ,  and  D e c l i n a t i o n ,  6 .  Hour angle is the  angle between the  
s t a t i o n  meridian and the project ion on the t r u e  equator of the s t a t ion -veh ic l e  vector meas- 
ured i n  the e a r t h ' s  t r u e  equator ia l  plane, as shown i n  f igu re  6-2. I t  is measured pos i t i ve  
westward from 0 to  277. Declination is the angle made wi th  the t r u e  equator ia l  plane by the 
s t a t ion - to -veh ic l e  vector. Declination is measured pos i t i ve  i n  the northern hemisphere, 
w i th  limits f n/Z. 

6. 1 . 2 . 5  4 D i r e c t i o n  C o s i n e ,  and m D i r e c t i o n  C o s i n e .  T h e t d i r e c t i o n  cosine, 
as  shown i n  f igure 6-3, is the cosine of t h e  angle between the s t a t ion -veh ic l e  vector and 
the s t a t i o n ' s  e a s t  vector, the l a t t e r  vec tor  being taken t o  l i e  i n  the  s t a t i o n ' s  horizontal  
plane. normal t o  the local meridian, pos i t i ve  eastward i n  both t h e  northern and southern 
hemisphere. I t  has  limits of f 1.0 i n  t he  computation wi th  no dimensions. The m d i r ec t ion  
cosine is the cosine of the angle between the  s t a t ion -veh ic l e  vec tor  and the s t a t i o n ' s  
north vector.  The nor th  vector is taken t o  l i e  i n  the s t a t i o n ' s  horizontal  plane and is 
pos i t i ve  i n  the north direct ion i n  both the northern and southern hemispheres. It has 
limits of f 1.0, w i t h  no dimensions. 

6.  1 . 2 . 6  
Y-angle is the  angle between the s t a t ion -veh ic l e  vector and the  perpendicular project ion 
of t h i s  vector on the s t a t i o n ' s  e a s t - v e r t i c a l  plane. 
negative westerly. and has  limits of f 77/2. 

v e r t i c a l  vector and the perpendicular project ion of the s t a t i o n - v e h i c l e  vec tor  i n  the sta- 
t i o n ' s  e a s t - v e r t i c a l  plane. 
f T. 

X - A n g l e  and Y-Angle .  These measurements a re  shown i n  f igu re  6 I 4. The 

I t  is pos i t i ve  measured e a s t e r l y ,  
The X-angle is measured between the  pos i t i ve  

I t  is measured from the pos i t i ve  v e r t i c a l  and l i e s  between 
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? - 
h 

LOCAL I 
VERTIC- 

VEHICLE 

NORTH 

F i g u r e  6 - 2  Hour Angle and F i g u r e  6 - 3  Direction Cosines 8 
Dec 1 i n a t  i o n  and I 

6 -  1.2-7  Range and Range-Rate Time E q u i v a l e n t s ,  A t ,  and A t ' .  These measurements 
are included since the r a w  data fm typical t racking systems are the time b e t w e e n  a trans- 
mitted and a received signs1 for range. and the time to count a given number of Doppler 
cycles for range rate. In  most systerrs, these quantities are f i r s t  converted to range and 
range ra te  units. 
equivalents. 

However, it m y  be found usef'ul in  some cases to  use the r a w  data 

6 .  1 .2.8 
craf t  disappears or reappears behind the limb of the Yoon as seen from an Earth-based track- 
ing  station. 

V e h i c l e  O c c u l a t i o n  Time TOCV. Time is measured at the instant a space- 

6. I .  2 . 9  
interrogation. 

One-Way Doppl or .  Ground station receives a signal not locked to a ground 

6.  I . 2 .  10 Two-way Coherent  Doppler .  Ground station receives B sign81 from the 
transponder which is being interrogated by a ground transaitter radiating through the same 
antenna utilized by the ground receiver. 

6.  I .  2.  I I Two-way lon-Coheren t Psoudo-Doppl o r .  Ground station receives a signal 
from the transponder which is being interrogated by a ground transmitter remotely located 
with respect to the receiver. The trnnsmitter and receiver reference frequencies are not 
locked. 

6.  I . 2 .  12 Radar A 1  t i m e t e r  Ranging.  The height above the reference bods surface is 
determined by measuring the round t r i p  time of an electmagnetic signal reflected from the 
surface. 

6 - 3  
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6 .  1 . 2 .  13 S t a d i o a e t r i c  Ranc in : .  lay_rr,~r k:~:::: th: :;=kg ;f ::,e 
reference body is measured. 
radius. 

The range t o  the body is deduced from knowledge of the body's 

6 . 1 . 2 .  14 A n g l e  Between t h e  R e f e r e n c e  Body and  A n o t h e r  P l a n e t .  The angle 
hetween the two vectors from vehicle t o  the reference body center  and from vehicle  t o  a 
selected planet ' s  center .  

6 . 1 . 2 .  15 A n g l e  Between t h e  R e f e r e n c e  Body and a S t a r .  The angle between the 
two vectors from vehicle t o  the cen te r  of a reference body and from vehicle to  a selected 
s t a r .  

6. 1 . 2 .  I6 A n g l e  Between a Landmark and a S t a r .  The angle between landmarks on 
t h e  Moon's or Earth 's  surface and a star. 

6 .  1 . 2 .  17 A n g l e  Between Two Landmarks.  The angle between two landmarks. e i t h e r  
both on t h e  Moon, o r  both on the Earth,  o r  one on each body. 

6 .  1 . 2 .  18 S t a r  O c c u l a t i o n  T ime,  Tots. S t a r  occulation time is measured at  the 
in s t an t  a selected star disappears o r  reappears behind the l imb of a planet o r  the Moon as  
seen from a space vehicle.  

6 . 2  COIlPUTATlON OF OBSERVATI  OMS 

6 . 2 -  I 
and veloci ty  of the spacecraf t  w i th  respect t o  t h e  point  of observation. 

INTRODUCTION. Observations a r e  computed e n t i r e l y  from t h ~  r e l a t i v e  posi t ion 
I n  most cases,  

only r e l a t i v e  posi t ion is involved so 
t h a t  computing the  observables becomes 

t o  follow, formulae a r e  given f o r  com- 
puting observations from the  ground and 

LOCAL VERTICAL from a space vehicle i n  o r b i t .  A sep- 
a r a t e  paragraph is devoted t o  observations 
from the Deep Space Net. 

- a problem i n  geometry. In  the paragraphs 
h 

\ 6 . 2 . 2  G R O U N D - B A S E D  OBSERVATIONS 
\ 
\ 

', NORTH 6 . 2 . 2 .  I Gene r a  1 . For ground-based 
\ - 

I sensors ,  account must  be taken of pre- 
cession and nutation. Refraction correc- 
t i o n s  should a l s o  be added t o  obtain the 
most accurate  values f o r  the observa- 
t ions .  - 

The s t a t i o n  posi t ion vec tor  i n  
a coordinate system r i g i d l y  attached t o  
t h e  e a r t h  is 

F i g u r e  6 - 4  X -  and Y - A n g l e s  

6 - 4  
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where 

hg  = geodetic a l t i t u d e ,  

4g = geodetic la t i tude ,  

C = correction fac tor  depending on 4G, 

E = Earth's  eccentr ic i ty ,  

L h , b v , h  = geodetic net correction. 

[GI, = transformrtion matrix from geodetic 
t o  Greenwich system. 

f71 = transformrtion from Greenwich t o  t rue  
system of date. 

To trsnsforr s, fm the true axmiinate system of date to the base date reference frame. 
nutation ami precession matrices must be presnltiplied into the vector in that order: 

where 

[A] = precession m a t r i x  

I 

[N] = nutation matrix. 

If vehicle poslticm is expressed w i t h  respect to s a e  reference body other than 
the hrth, the station-to-vehicle position is given by 
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R = veh ic l e  p o s i t i o n  w i t h  r e spec t  t o  
i r e f  e fence body 

Rp, = r e fe rence  body p o s i t i o n  w i t h  r e spec t  
t o  Earth.  

If Ear th  is the refereawe body. then, 

PB = - R$B ( 4 )  

In  the cunputations to follow, most of the observables w i l l  be expressed i n  a 
topocentric coordinate system, the unit vector8 of this frame being given i n  the base date 
system. Using station coordinates, the u n i t  rectors are: 

- 

nor th  v e c t o r  1 
I 

x = [l 0 -01' e a s t  vec to r  

- 
y = [o 1 01 ' 
- 
z = [D 0 11 ' up v e c t o r  

In  tenns of the base date system, these vectors are transformed to 

- 
eB = [TI 'il 

nB = [TI nor th  v e c t o r  

hB = [TI i 

e a s t  v e c t o r  

- 

u p  vec to r  

[TI = [ A I  [Nl [y] [GI, [a], 

[a] being a rotation matr ix  to account for misalignment between the station coordinates 
and the actual east-north-up system. 

6 - 6  
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6 . 2 . 2 . 2  Azimuth, A 

The quadrant of A is obtained fmm the si- of the nuerator and denominator in equation 
( 8 )  

6 . 2 . 2 . 3  E l  e v i t i o n ,  E 

I 
I - -  

I 
1 -  

The quadrant of E is obtained fmm the signs of the nmerator and denominator in equation 
(9). 

6.2.2.1) Round-Trip Range, p' 

6 . 2 . 2 . 5  Range-Rate, > 

where V = v - v 
vSB = 
where kc; is the hrth's angular relocity vector. 

the vehicle velocity relative to the station in  the base date system; 
[nf [WJkE, the station velocity in  the base date gy~tell.  [We] %E = % X %E, 

where 

h = the  hour angle  of pII with respect to  the  
s t a t  ion : 

( 1 2 )  

y = r i g h t  ascension af Greenwich; 
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(Ac) = s t a t i o n  lonei tude  
S 

(RA)  = r i g h t  ascension of  pB 

. I  
In equation (12), 

(RA) = Tan-' 1'' , 0 5 ( R A )  < 272. 

The quadrant of (RA) is obtained from the signs of the numerator and denominator i n  
equation (13).  

6.2.2.7 D e c l i n a t i o n .  8 

PB 
6 = Tan-' 

6.2.2.8' 

6.2.2.9 

i., 1 0 

8 D i r e c t i o n  C o s i n e  

m D i r e c t i o n  C o s i n e  

X-Angle 

X = Tan-' 

PB " 8  

PB 
m =  

-. 

(13) 

(14) 

(15) 

(16) 

'rile quadrant of X is obtained from the signs of the numerator and denominator i n  
equation (17).  



OBSEIVAELES 

6.2.2. I I Y-Angle 

6.2.2.12 Range Equivalent, At 

(19) 
C C 

where c is the velocity of light. 

6.2.2. it Range-Rate Equivalent, At' 

p2 - p1 A t '  = . 
C 

*here p1 and p2 are the mges evnlmted8t the beginning and at the end of the .ers9rement. 
respect i vely . 
6.2.2. I 4  Vehicle Otcul tation T i m .  Unlike the foregoing obsemtiaas. the alcula- 
tion of occultatiaa time eatrib iterations. As ehorn in figure 6-5. a gnnmd station 
observes the occultation of a spacecraft by the Iban. The iteration equation is 

(22; 

1'0 

R R  
= s i n - '  - 

RSM 
(24 )  
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i 

Figure 6 - 5  Vehicle Occultation B y  The Moon 

I n  the preceding expressions, pB is the  vector from the s t a t i o n  t o  the  vehicle ,  RSM the 
vec tor  from the s t a t ion  t o  the Moon's mass center ,  % t h e  mean lunar  radius ,  and TI the 
i n i t i a l  time of the i te ra t ions .  
a r e  needed t o  obtain t h e  desired precision. 

The l i m i t  k i n  equation (22) implies t h a t  k t 1 i t e r a t i o n s  
The de r iva t ive  is given by 

1 

d t  

t (25) 
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I n  the preceding expressions, pB is the  vector from the s t a t i o n  t o  the  vehicle ,  RSM the 
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i n i t i a l  time of the i te ra t ions .  
a r e  needed t o  obtain t h e  desired precision. 
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The de r iva t ive  is given by 
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OBSERVABLES 

being the  vehicle v e l o c i t s  w i t h  respect t o  the s t a t i o n  and su t h e  veloci ty  of t h e  lunar  
mass center  r e l a t i v e  to the s ta t ion .  

6 . 2 . 3  OBSERVATIONS FOR THE DEEP SPACE NET 

6 . 2 . 3 .  I I n t rodu c t i on  Three typical IX?? observations are given here. However, the  
method f o r  computing these observables can change depending upon t h e  hardware i n  use for a 
p a r t i c u l a r  mission. 

6 . 2 . 3 . 2  One-way D o p p l e r  

w.iere fi is t he  range! rate measured f m  the s ta t ion  snd c is t h e  ve loc i ty  of l igh t .  

6 . 2 . 3 . 3  Two-Way C o h e r e n t  D o p p l e r  

f 2  = 0.1 X lo6 + 30 [:] (FRQ) ["' ".] c y c l e s / s e c o n d ,  

where (AIQ) is the  refeience frequency, and where ,hi and ,bq are range-rates 
and qth s t a t i o n s ,  respectively.  In general ,  b, = ,bq. 

from the ith 

6 . 2 . 3 . 4  Two-way Won-Coherent Pseudo-Doppler  

c y c l e s / s e c o n d ,  1 [:] [z] (FRQ) [l- C 

( i, + fi.1 
f3 = 930.150 X 10' - 30 

where t h e  ith and qth s t a t i o n s  are paired i n  accordance with the following table: 

6-11 



1 ANALYTICAL B A S I S  

6 . 2 . 4  O W - B O A R D  OBSERVATIONS 

6 . 2 . 4 .  I R a d a r  A l t i m e t e r  R a n g i n g  

H = 2 HR earth radii, 

where HR is the height above the reference planet. 

6 . 2 . 4 . 2  S t a d i o m e t i c  R a n g i n g  

(SR) = 2 sin-' - radians, [::I 
RR being the planet radius and % the distance from the planet. 

6 . 2 . 4 . 3  A n g l e  Between R e f e r e n c e  Body and P l a n e t  

App = cos-' [: +] radians, 
where z is the vehicle-planet vector, and R is the vehicle-reference body vector 

6 . 2 . 4 . 4  A n g l e  Between a S t a r  and t h e  R e f e r e n c e  Body 

ApS - - COS- E * i] radians, ( 3 2 )  

where z is the vehicle-planet vector, and ; is a unit vector indicating :\e star direction. 
This direction is a function of right ascension, (RA), and declination, 6 :  

- 
n = [COS (RA) cos 6 sin (RA) cos 6 sin S I  

6 . 2 . 4 . 5  A n g l e  Between a Landmark and a S t a r  

ASLM - - COS-' cd - * F] radians, ( 3 4 )  
\d 

- 
in which equation d is the vehicle-landmark vector, and n is the unit vector defined above. 

6 - 1 2  

~~ 

( 2 9 )  

(30) 

(31) 

( 3 3 )  



6 . 2 .  4. 6 A n g l e  Between Two Land8arks 

r a d i a n s .  ALL 

where d and y are t h e  vec tors  from t h e  vehic le  to two d i f f e r e n t  landmarks. 

OB SERV A I L  ES 

(35) 

6 . 2 . 4 . 7  S t a r  O c c u l t a t i o n  Time. As i n  vehic le  occul ta t ion ,  star occul ta t ion  time 
is cmputed from a Newton-Raphson i t e r a t ion :  

k 

u 
i-0 

where t h e  geometry is defined by figure 6-6. Ihe angles  are computed fram 

R o n  
cP2 = c o s - 1  1 -1 

I n  t h e  above expressions, R is t h e  vector from the  occul t ing  body to t h e  vehicle ,  n defines  
the  d i r e c t i o n  of t h e  star being occulted, % is t h e  rad ius  of the  occul t ing  body, TI is 
t h e  i n i t i a l  time of the  i t e r a t i o n ,  and the  l i m i t  k implies that t + 1 it.emtions are required 
to  ob ta in  the  des i red  precision. The der iva t ive  of equation (36) is given by 

R s i n  &2 [ R2 R3 s i n  41 d t  

R being t h e  vehic le  ve loc i ty  with respect t o  t h e  mass cen te r  of t he  occul t ing  body. 
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, ANALYTICAL B A S I S  

6 . 3  MATRICES OF PARTIAL DERIVATIVES I 
I 

6 . 3 .  I I N T R O D U C T I O N .  In the process 
of s t a t i s t i c a l  es t imat ion,  matrices are 
employed which habe as t h e i r  elements 
partial der iva t ives  r e l a t i n g  the  state 
vectors  to t h e  observations. I n  d i f f e ren -  
t i a l  fonn, 

sy = M 6X ( 4 1 )  

i n  which 8: is t he  vector  of observation 
r e s idua l s  and 8; is t h e  s t a t e  vector. M 
h a s  dimensions ixj, where i is the  number 
of observables and j is t h e  number of 
states. 

Expressing t h e  observation 
matrix f o r  a given ObSeNatiOn type in 
general fonn: 

v 

F i g u r e  6 - 6  S t a r  O c c u l t a t i o n  

Each submatrix denotes a se t  of partial de r iva t ives  w i t h  respect to d i f f e r e n t  components 
of the s t a t e  vector. 

MOV: 

Mos: 

a 1x6 matrix relating t h e  observations t o  t h e  pos i t ion  and velocit,y components 
of t h e  vehicle. 

a 1x3 matrix re la t ing  t h e  observations to errors i n  the  ground s t a t i o n  pos i t i on  
expressed i n  t h e  Greenwich coordinate system. 
pos i t i ve  through the  prime meridian, z is p o s i t i v e  through the  North Pole. and Y 
completes a right-handed system. 

a 1x3 matrix relating the  observations t o  t h e  ground s t a t i o n  o r i en ta t ion  angles  
defined with respect to the  local east, nor th  and up vectors. 

In  t h i s  system, x is taken as 

MOR: 

Mm: 

MOC: 

MOT: 

Mop: 

a 1x1 matrix r e l a t i n g  t h e  observations t o  themselves. 

a 1x1 matrix r e l a t i n g  the  observations t o  t h e  speed of l i g h t .  

a 1x1 matrix r e l a t i n g  t h e  observations t o  t h e  observation time. 

a 1x6 matrix r e l a t i n g  the  observations t o  t h e  propagation parameters. 
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OBSERVABLES 
, 
I . 

6 . 3 . 2  PARTi4L  DERIVATIVES FOR BROUND OBSERVATIONS 

6 . 3 . 2 . 1  A z i m u t h ,  A 

- 
0 0 01 

1 [(ii COS A - n s i n  A )  - - 
M q v  p B  cos E 

.IL;] am 

(43d) 

cos p cos y t tan E ( s i n  A s i n p -  cos A s i n  y cos p )  

- ( s i n  y + cos A tan E cos y) 

- s i n  A tan E 

where 3 and 7 are s ta t ion  or ientat ion angles. 

MAA = 1 

MAC = 0 

- MAT - MA" V, + M A 8  [+)'IT V 
SB 

M A P  = 0 

6.3.2.2 Elevation, E 

HEY [I- [sB s i n  A s i n  E + zg(cos A s i n  E - COS E)] 0 0 O] (44a) 

- 1  aE - - 1  . - -  - 
e -  

(Le sin A s i n  E ' am cos A s i n  E 
(44c) 
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A N A L Y T I C A L  B A S I S  

cos A sin ,!3 + sin A sin y cos 

M~~ = sin A cos y I: 
1 cos  A 1 

6 . 3 . 2 . 3  R o u n d - T r i p  Range, p 1  

6 - 1 6  

Mp'v = [E PB 0 0 0 ]  

M P I R  = 0 

M 1 

I 

- P  
M p l c  - - 

C 

( 4 4 d )  

( 4 5 a )  

( 4 5 h )  



~~~ ~ 

OBSERVABLES 

6 . 3 . 2  P A R T i i i  DERIVATIVES FOR BROUHD OBSERVATIOHS 

6 . 3 . 2 . 1  A z i m u t h ,  A 

1 - 
[(ii COS A - n sin A )  0 0 03 

pB cos E 'A i '  

(43d) 

cos ,8 cos y + tan E (sin A s i n p -  cos A sin y cos p )  

- (sin y + cos A tan E cos y) 

- sin A tan E 

v h e r e  t3 and y are station orientation angles. 

M A A  = 1 

6 . 3 . 2 . 2  Elevation, E 

M E V  = c- [eB sin A sin E + nB(c0s A sin E - cos E)] 0 0 O] ( 4 4 a )  

2 E  - - 1  - - 1  . - -  - -  
rLQ sin A sin E ' am cos A sin E 
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ANALYTICAL B A S I S  

sin A c o s  Y 

cos  A - 

6.3.2.3 R o u n d - T r i p  Range,  p' 

M p I R  = 0 

MpIp' = 1 

1 

"1 

z s ) l  [Yl 

(44f) 

(44n) 

(44h) 

( 4 S a )  

6 - 1 6  



OBSEIV ABLES 

6 . 3 . 2 . U  One-way Range-Rate, 

- M. - 
P S  

M., = 1 
PP 

6 . 3 . 2 . 5  Hour A n g l e ,  h 

6- 17 



ANALYTICAL BASIS 

1 

[:::I 

6 . 3 . 2 . 6  Declination, 6 

1 cos E sin +G - sin E cos A COS +G as - =  
2E cos 6 

sin A COS A COS as - 
aA cos s 

- _  

6-18 
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Ha& = 1 

us C = o  

as 
Ysp = as 

6.5 .2 .7  4 D i r e c t i o n  C o s i n e  

Y.ev = [" 

m - = - s i n  E s i n  A ;  - - a4 x -  
a E  2 A  

V I  
2 

PB 

0 
4 

PB 
0 - 

(49a) 

( 4 9 b )  

( 4 9 C )  
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1 ANALYTICAL B A S I S  

L -  

- a4 
M'P - 'EP 

6 . 3 . 2 . 8  rn D i r e c t i o n  C o r i n e  

(49h) 

6 - 2 0  



6 .3 .2 .9  X-Angle 

, -  

Y,, = 1 

Y,c = 0 

am 
i3E Y,P = - ygp 

OBSEIV AULES 

Yxx = 1 

Yxc = 0 

6 - 2 1  



ANALYTICAL B A S I S  

6 . 3 . 2 .  10 Y - A n g l e  

C O S  A s i n  E ay - s i n  A cos E 
.- a - - - . - - -  
a E  cos Y ' a A  c o s  Y 

- 
M E S  

,M A 6- 

M y y  = 1 

M y C  = 0 

6- 22 



OBSERVABLES 

I 6.8.2. I I Range Equiv8lent, At 

'Atr = O 

'AtAt = 1 

- P' -- - 'Ate ,2 

2fU(At'l2 

CN 
1(= 

where 

fu = tMsllitted frequenq: 

c = velocity of light; 

N = nmber of qcle  counts. 

UAt'&' = 1 



ANALYTICAL B A S I S  

I 6 - 2 4  

6.3.2, I 3  V e h i c l e  O c c u l t a t i o n  T ime,  To,." 

, - - -  - -  - 
Y - - .- -' [ 1 , 0 i  Ip.j  I p . k  o o 01, 

T O C V V  lp .b  

- -  - 
where i ,  j ,  and k are unit  vectors i n  the base date coordinate system. 

- PB 

PB 

- 
I, = I, x -  

PB R3, - 
I ,  = 

1 PB x R,,I 

6.3.3 PARTIAL DERIVATIVES FOR THE DEEP SPACE NET 

6.3.3. I One-way D o p p l e r  

afi  - 930  096 875 - 
C 



6.9.9.2 Two-Wry Coherent D o p p l e r .  BY t h e  chain rule, 

I -  

OBSERVABLES 

where 5 stands for any of the elements in  the state vector. 
however. 

Fbr closely spaced stations, 

Hence, 

Let 

64.719 1011 
K = -  = (FRQ) 

c 



ANALYTICAL B A S I S  

= K M .  
f 2 T  P i T  

m 

6 . 3 . 3 . 3  Two-way Won-Coherent  P s e u d o - D o p p l e r .  
given for two-way coherent doppler, 

Let 

(57i ) 

(571 ) 

(57k) 

Using the same arguments as were 

2af3 62.696 6292 
K '  = -  = (FRQ) 

a:. C 

Then, 

v = p i s  
M 

= 1  
% f 3  

(58b) 

6 . 3 . V  PARTIAL DERIVATIVES F O R  O W - B O A R D  OBSERVATIONS 

6 . 3 . 4 .  I 
Moo will be used. 
and to the observations themselves, respectively. 

I n t r o d u c t i o n .  For on-board observations. only matrices of the type MOV and 
These matrices relate the observations to vehicle position and velOCltY. 
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OBSERV ABLES 

6 . 3 . 9 . 2  Radar Altiaeter Ranging, H 

YHH = 1 

6.3.11.3 Stadioaetric Ranging 

'SRV = [ 2RR ':g~) 0 0 .] 
. R D 3  COS - 

2 

%RSR = 1  

6 . 3 . 5 . 4  Angle Between Two Planets 

= 1  
APP AP P 

6 . 3 . 5 . 5  Angle Between a Star and a Planet's Center 

- z -  m = -  n = [ c o s ( R A )  cos 6 sin(RA) c o s 6  sin6 1 
Z' 

= 1  
MAP SAP S 
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ANALYTICAL BASIS 

6 . 3 . Y . 6  

6 . 3 . 4 . 7  

6 . 3 . 4 . 7  

p =  d x i  x d  

Y = 1  
%LM %LM 

Angle Betwern Two Landmarks 

- 
m - (ii*Tii)ii + n - (ii*iii)Tii 0 0 0 1  

"ALLv d s i n  ALL Y s i n  ALL 

d .  Y 

S t a r  Occul t a t i o n  Tim., TOCs 

where i, J, and 'Ti are u n i t  vectors  i n  t h e  base date coordinate system. 
- - 
I, = I, x n 

R x i i  
)R xEl 

- - I, -- 

(65b) 

6.4 

have been passed through e d i t  and merge rout ines  t o  time order a l l  data from all  sources 
onto one input tape of standard fomat. 
ad jus t8ents  to  be d e  before t h e  data are used in  t h e  Program: 

AMBIGUITY RESOLUTION AND TIME CORRECTION 

Pr io r  t o  the  in t roduct ion  of data i n t o  the  main Program, t h e  ava i lab le  raw data 

After so r t ing  and merging, there still remain two 
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OBSERVABLES 

0 The t ime  which is rssimed M the instant  of an observation must take in to  account 
t h e  f i n i t e  p r o p w t i o n  t i m e  from t m s l l i s s i o n  to reception at each end of t h e  l ink 

&me measuring systems Prodnce ambiguous da ta  in  the  sense t h a t  t h e  recorded value 
differs  from the  real value by 8 a e  uncertain mult iple  of a f i x e d  quantity. 
ambiguity is not readily renolnble by t h e  measuring device s ince  a p r i o r i  infoma- 
t i o n  is needed. 

The 

i -  
The Program handles these tm problems i n  t h e  sequence sham i n  f i g u r e  6-7. 

raw data, already time-ordered on t h e  data tape. are read in.  
ciated w i t h  up to four  data types from lay one s ta t ion .  
are avai lab le  for:  

The 
Each data t i m e  can be asso- 

As each t i m e  is read in.  options 

re jec t ing  data which are marked as being o f  paor qual i ty  

rejecting data of my type from any s t a t i o n  

re jec t ing  a l l  data from .ny station o r  s t a t i o n s  

re jec t ing  eny m r t i c u l a r  da t a  point which is not  an i n t e g r a l  mult iple  of an input 
value. This allows s e l e c t i n g  ln, 2n. 3x1. In. . . . data of any time from arry s ta t ion .  

The next raw data t i m e  is selected. and two-hody theory is used t o  compute t h e  
vehicle 's  posi t ion at  that time, f r a  which the stat ion-to-vehicle  dis tance,  pB. is computed 
and those d a t a  requir ing ambiguity resolut ion have t h i s  cor rec t ion  made. 
*ere c Is the  ve loc i ty  of liht. is subtracted fm the  time recorded f o r  each measurement 
time. translating back t o  t h e  time the message was sent  from t h e  vehicle. 
rected for  time. are sent  to the rain Program, where they are used i n  t h e  statistical esti- 
mation process. TBe next data m i n t  is then brought in. Thus, t he  t i m e  correct ion and 
ambiguity resolut ion are cont inual ly  repeated, the precis ion increasing as t h e  precision of 
t h e  orbi t  improves. 

The factor pB/c 

f ie  data. cor- 
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1 ANALYTICAL BASIS 

1 
READ DATA TAPE 

r 

EXERCISE DATA REJECTION OPTIONS 
b 

USE TWOgODY THEORY TO COMPUTE 
POSITION AT R A W  DATA TIME 

m COMPUTE P i e  

i 
CORRECT RANGE AMBIGUITY, IF 
ANY, AND SUBTRACT &e/c FROM 

RECORDING TIME 

INTEGRATE TO TIME T-PTB/c 

PROCESS DATA 

I 

Figure 6-7 Data Selection and Correction 



APPFNDIX A 

COORDINATE SYSTEMS AND TRANSFORMATIONS 

A- I I WTRODUCT I OW 
This appendix describes t h e  transformations of vehic le  i n i t i a l  conditions and e a r t h  

and lunar  oblateness a t t r a c t i o n s  t o  the  "base date" coordinate system used for trajectory 
ca lcu la t i ans  i n  t h e  program. 
vernal  equinox of O!o January 1 of t h e  year suhsequent t o  t h e  launch year. 
chosen as t h e  basis for ca lcu la t ion  because the p lane tam and solar coordinates are wr i t ten ,  
on tapes, i n  that coordinate system. Rather than transform the  tape information. t h e  vehic le  
i n i t i a l  conditions and t h e  oblateness acce lera t ions  are transformed i n t o  t h e  base date 
system. 

The base date system is determined by the d i r e c t i o n  of the 
It has been 

Vehicle i n i t i a l  conditions t h a t  a re  inser ted  i n  an earth-referenced system, snch 

This system ( t rue  ear th)  differs  from t h e  base date system by t h e  
85 l a t i t u d e ,  longitude,and a l t i t ude .  a r e  transfomed f i r s t  to a system determined by the 
vernal  equinox of date. 
Earth 's  nutation and precession. 
s ion  matrix b] then br ings  t h e  i n i t i a l  condi t ions i n t o  t h e  base date system. 

Transforrration by the  nuta t ion  matrix h] and t h e  preces- 

The oblateness a t t r a c t i o n  of t h e  Earth is ca lcu la ted  from a knowledge of t h e  pael- 
Since t i o n  of t h e  vehicle  from t h e  center  of t h e  Earth, expressed i n  t h e  t r u e  e a r t h  system. 

vehic le  posi t ion.  as ca lcu la ted  in  the  t r a j ec to ry  portion of t h e  prognra is i n  base date 
components, these components must be transformed v ia  precession and nuta t ion  i n t o  t h e  true 
e a r t h  system. After computation, t he  oblateness a t t r a c t i o n  is transformed i n t o  t h e  base 
date system. 

The oblateness a t t r a c t i o n  of t h e  m n  is ca lcu la ted  from t h e  vehic le  pos i t ion  with 
respect to  the  moon's cen te r  and the  lunar  oblateness  matrix. 

The transformations described i n  t h i s  appendix are also employed i n  ca l cu la t ion  
of t h e  observations and t h e  matrices of Cn&r partial derivat?ves with respect to  the state 
var iab les .  

A.2 DEFIWITIOW OF COORDINATE SYSTEM 

A.2. I 
r o t a t i o n s  of right-handed Cartesian-coordinate systems. 
systems are employed: 
geocentr ic ;  geodetic; selenocentr ic .  

GENERAL. The transformations described i n  t h i s  appendix all  represcrrt r ig id  
The following general  coardlnate 

d i r ec t ion  of vernal equinox at a spec i f i ed  date; moon-referenced ues; 
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I ANALYTICAL BASIS 

A .  2 . 2  VERNAL E O U  I N O X  SYSTEMS 

A.  2 . 2 .  I Mean V e r n a l  Equ inox  o f  Base D a t e .  Tt r i s  system employs u n i t  vectors  
xB, yB,  and ZB, defined as follows: 
- -  

- 
X B  - Unit vector  directed towards t h e  mean vernal equinox of hase 

date, i .e . ,  i n t e r s e c t b n  of ec l ip t i c  (mean plane of E a r t h ' s  
motion about t h e  sun) of base date  and mean equator ia l  plane 
o f  base da te  

- 
ZB - Unit vector  noma1 t o  mean equator ia l  plane of base date, 

pos i t ive  in  northern hemisphere 
- 
y B  - u n i t  vector  completing right-handed orthogonal system wi th  

xB and zB 

A . 2 . 2 . 2  
ZQ' defined for t h e  date of i n t e r e s t  i n  t he  same manner as u n i t  vectors  xB, yB,  and ZB 
are defined f o r  t h e  base d a t e  (paragraph A. 2 . 2 . 1 ) .  

A .  2 . 2 . 3  T r u e  V e r n a l  Equ inox  o f  D a t e .  This  system employs u n i t  vectors XF, YE, and 
ZE defined as follows: 

Mean V e r n a l  Equ inox  o f  D a t e .  This system employs u n i t  vectors  FQ,JQ, and - -  - 

- -  

- 
XE - Unit vec tor  directed towards the  t r u e  vernal equinox ot  aate, 

i . e . ,  in te rsec t ion  of t r u e  equator ia l  plane and ecl ipt ic  plane 
of date. 

- 
zE - Unit vector  normal t o  t r u e  equator ia l  p:ane, pos i t ive  i n  northern 

hemisphere 
- 
YE - p i t  vector  - completing right-handed orthogonzl ..jstem w i t h  

xE and zE. 

- -  
- A . 2 . 3  
Zy, defined as follows: 

MOON-REFERENCED AXES SYSTEM. This system employs u n i t  vectors  Xu, y,, and 

- 
Xu - Unit vector  along the  ( A )  pr inc ipa l  a x i s  of Moon, pos i t ive  on 

Earth s ide  

- 
Iy - Unit vector  along t h e  (C) p r inc ipa l  axis of t h e  Moon, pos i t ive  

i n  t h e  d i rec t ion  o f  r o t a t i o n  of Moon about its a x i s  
- 
Y, - Unit vector  along t h e  (B) p r inc ipa l  a x i s  of Moon, completing 

a right-handed system with 3, and zM. 

A - 2  



A. 2. EO E R T  I C  ORD A T E  Y T 
“his system employs the following para- 
meters (see figure A-1): 

- - 
XG - U n i t  vector i n  t rue  equatorial 

plane, directed toward inter-  
section of Greenrich meridian 
with equatorial  plane 

- 
zG - U n i t  vector normal t o  t rue  

equatorial  plane, positive 
in northern hemisphere 

- 
yr. - U n i t  vector completing a right- - 

handed orthogonal system wi th  
xG and ZG 
- - 

- Geocentric r igh t  ascension 

- Declination of  l i n e  f r o m  
center of Earth to vehicle 

- Geocentric distance to 
vehicle 

- 
1, - U n i t  vector normal t o  vehicle’s 

local meridian, posit ive 
eaStrard 

1. 

F i g u r e  A - 1 .  Geocentric 
Coordinate System 

‘E - U n i t  vector i n  direct ion of geocentric radius to vehicle 

- - 
% - Unit vector completing right-handed orthogonal system with xE and rE 

A. 2 . 5  G E O D E T I C  C O O R D I N A T E  S Y S T E M .  This system employs the following parameters 
(See figure A-2): 

- -  - 
1, - Unit vector normal to  vehicle’s iocai m s i i d h i ? .  p x i t i y e  enstward (Ac = hE) 

EG - U n i t  vector along tha t  noma1 to the  Ea r th ’ s  surface (considered as an el l ipsoid)  
which passes through the vehicle‘s posit ion 

- 
oG - U n i t  vector completing right-handed orthogonal system with xG and KG 

)L; - Geodetic longitude. posit ive eastward from Greenwich meridian 
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ANALYTICAL BASIS 

4~ - Geodetic la t i tude  ,(angle $etreen equatorial plane m d  FGl 

hG - Altitude above Earth’s surface, measured along FG. 
\ ’  - 1 ’  

A.2.6 S E L E N O C E N T R I C  C O O R D I N A T E  S Y S T E M .  This system e81pl0ys the following 
coordinates (see figure A-3): 

- 
A, - Unit vector normal t o  local moon meridian, posi t ive eastward 

ra - U n i t  vector from center  of moon t o  vehicle 
- 

- 
qj, - U n i t  vector completing right-handed or$hogonal system Sith and 7. 

- Selenocentric longitude. measured i n  t h e  - Y&plane (paragraph 
A . Z . 3 )  in  the &nsd of posi t ive rotat ion about z, 

4 - Selenocentric declination ~f l i p e  frbm moon center  to vehicle ~ 

R, - Selenocentric distance from moon center  t o  vehicle 

. 

* .  
. .  

. . .  

P r -gure A - 2 .  Geodetic 
Coordinate Sys t e a  

Figure A - 3 .  ~ S e l e n o c e n t r i c  
C o o r d i n a t e  Sys t e n  
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C N I D I N A T E  SY-S 

A.2.f AZIMUTH AID FLIQHT PATH AMBLES. The following vehicle  f l i g h t  parameters 
are mloyed (see fipre A-4): 

v - Velocity of vehic le  r e l a t i v e  to  t h e  io. fG, zG coordinate system 

- Azimuth r e l a t i v e  to Te Fa, E, system 

yo - Fl igh t  ps th  angle relative to xG. iG, FG system 

Ag - Azimuth r e l a t i v e  to %, G, system 

- -  
YE - Fl ight  path m e  r e l a t i v e  t o  &. *. rE system. 

A.3 LIST OF TRAMSFORMATIOMS 

Table A-1 lists the  coordinrte aystem t r sns fowa t ion  matrices u&fn the 
Ihe Coordinate system under the  Fruo and To columns are defined i n  pamgrnph A.2. ppOgra8. 

The nmtri- used are given i n  pamgxnph A.4. 
i 

: : Table A - 1 .  Transformation Matrices 

m t r i x  &bo1 m t r i x  N8.e 

Precession 

Nutation 

Librat ion 

Gsaaa Matrix 

Geodetic to Greenwich 

I 
I 

Transforration 

Declination, Right 
Ascension 

Selenographic 

NOTE: 
a r e  orthogonal, t h e  inverse of  any is simply its tnrnspose. 

Since a l l  the  tnrnsformation matrices listed i n  table A - 1  

A%'# TRANSFORMATIONS 

-- 
Tb. 

- - -  
'E YE 'E 

q. I 
due to lunar  and solar a t t r a c t i o n s  on the  terrestrial bulge. 
o r b i t  about t he  Suu (ecliptic) moves slowly because of planetary a t t r ac t ions .  

PRECESSION. The sp in  a x i s  of  t he  Ea r th  is slowly precessing i n  i n e r t i a l  space 

As a r e s u l t  
The plane of the  Earth 's  
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ANALYTICAL BAS1 

c 

A POSITIVE CW FROM NORTH 
7 POSITIVE UP FROM z-1 PLANE 

Figure A - 4 .  A z i m u t h  and  
F1 i g h t  P a t h  A n g l e s  

the  in te rsec t ion  of t h e  Ear th ' s  mean 
equator and t h e  ecl ipt ic  (termed the  ver- 
nal  eqiiinox, y )  undergoes a gradual-rota- - 
t i o n  i n  space. Therefore, t h e  2 y, ZQ 
coordinate system is r o t a t i n g  wi% respect 
t o  t h e  XB, yB, ZB system. Figure A-5 
illustrates t h i s  r o t a t i o n  of t h e  vernal 
equinox w i t h  respect t o  its pos i t ion  a t  
base date. 

- - -  

The following form of t h e  pre- 
cession transformation matrix is derived 
from the  forms i n  references 6, 20, and 
21. 

The standard form of t h e  pre- 
cession matrix is a set  of elements 
a i j (T)  t h a t  are funct ions of the  time T 
i n  Jul ian centur ies  of  36525 days f r o m  
some standard time, usual ly  Oh0 January 
1, 1950, t o  the  present  epoch. This 
transfonnation [a(T)] takes  a vector  from 
the  present-t ime system t o  t h e  January 1, 
1950 system, i. e . ,  throuph t h e  small angle  
t h a t  t h e  earth has  Drecessed i n  the  time T.* 

I t  is des i red  t o  refer vectors  t o  oh0 January 1 cif y6:ar subsequent to  launch rather 
than t h e  1950 date. Let 

TB = time in  J u l i a n  centur ies  from oho January I, 1950 t o  oh0 January I, 
of year a f t e r  launch. 

AT = time i n  Julian c e n t u r i e s  f r o m  o!o January 1, of  year a f t e r  launch, 
to  the  present  ( t ra jec tory)  time. 

T = T~ + AT - time i n  JUlian centur ies  from oho January 1, 1950 t o  
trajectory time. 

The desired transfonnation f r o m  t he  present  system to t h e  new base d a t e  is the  product of 
[a(T)l ,  which transforms from t h e  present  date system to  t h e  1950 d a t e  system, and [a(TB)I-' 
which goes from t h e  1950 system t o  t h e  base d a t e  system. Thus, t h e  precession matrix. 
[A],  is given by 

_ - - - - - -  
*For an a l ternat ive  form of  the precession matrix used  i n  the Program. see  the Programmer's 

Manual. 
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COORDINATE SYSTERS 

Figure A - 5 .  Precession of Equinoxes 

The quantity a(TB + AT) can he written as a sum: 

:a(TB + AT)] = [~(TB)] + [Aa(AT, TB)] 

So that 
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where t h e  e l e m e n t s  a i j  are a i j ( T g ) ,  t h e  s t a n d a r d  forms of t h e  p r e c e s s i o n  t r a n s f o r m a t i o n  
e l e m e n t s  e v a l u a t e d  a t  Tg. 

The Aaij e l e m e n t s  are o b t a i n e d  from t h e i r  d e f i n i t i o n  as follows: 

a 
a i j ( T g  t AT) - a i j ( T g )  + A a i j ( A T ,  T g )  

- 
Aa, , (AT,  T B )  - a i j ( T g  AT) - a i j ( T g )  

Expanding i n  a power s e r i e s ,  u s i n g  terms u p  t o  the t h i r d  power, 

Aa , , (AT,  T g ) = a o i j  t a l i j ( T B t A T )  t a 2 i j ( T g  t  AT)^ + a 3 i j ( T B  +  AT)^ 

where 

- a o i j  - a l i j  Tg - a 2 i j  T B 2  - a 3 i ,  TB3 

= a l i j A T  + a 2 i j ( 2 T g  AT + A T 2 ) +  a S i j ( 3 T B 2  AT + 3 T B   AT^ + AT3) 

A 
r1 A T ,  

A 
= ( 2  T~ AT +  AT^), r 2  

and 
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The ai, and bI, elements are as fOll0~8: 

~ ' .  
! -  

all = 1 . 0 0 0 0 0 0 0  - 0.000296970 TB2 - 0 ~ 0 0 0 0 0 0 1 3 0  T B ~  

a12 = 0 . 0 2 2 3 4 9 8 8  T g  0 . 0 0 0 7 6 7 0 0  Tg2 - 0 . 0 0 0 0 0 2 2 1  T B ~  

a13 = 0 . 0 0 9 7 1 7 1 1  Tg - 0.00000207 T B ~  - 0 . 0 0 0 0 ~ 0 9 6  T B ~  

a 2 1  = - 1 2  

a 2 2  = 1 . 0 0 0 0 0 0 0  - 0.00024976 TB2 - 0 . 0 0 0 0 0 0 1 5  TB3 

823 = - 0 . 0 0 0 1 0 8 5 9  TB' - 0.000000030 T B ~  

a33 = 1.0000000 - 0 . 0 0 0 0 4 7 2 1  TB2 t 0 . 0 0 0 0 0 0 0 2 0  TB3 

and 

Aall - 0.00029697 r 2  - 0.000000390 r 3  

Aa12 = 0 . 0 2 2 3 4 9 8 8  71 + 0.00000676 T~ - 0 . 0 0 0 0 0 6 6 3  r3 

Aa13 = 0 . 0 0 9 7 1 7 1 1  T~ - 0.00000207 7 2  - 0. .00000288 73 

Aa21 = -hlZ 

A a Z 2  = - 0 . 0 0 0 2 4 9 7 6  72 - 0.000000450 r 3  

A a 2 3  = - 0 . 0 0 0 1 0 8 5 9  r2 - 0.000000090 r3  

Aa31 = -Aa13 

A a 3 2  = +AaZ3 

ha33 = - 0 . 0 0 0 0 4 7 2 1  7 2  + 0.000000060 7 3  
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ANALYTICAL BASIS 

* r r  a1r."n..+- ,e LL- _..- -----..-- V I  y~tzwspaiuI1 mairix a r e  ccyputea whenever needed wi th  the 
exception t h a t  if the matrix has been computed wi th in  the previous 1322 seconds, the pre- 
vious value is used. 

A.4 .2  
sp in  axis. 
The o s c i l l a t o r y  motion of the YE, yw ZE system about its mean posi t ion,  the Gw vw and ZQ 
system, is described by the transformation between the two systems. 
[N] is as fnllors: 

NUTATION.  Nutation is the  periodic angular motion experienced by t h e  E a r t h ' s  
"he Ea r th ' s  mean equator ia l  plane is the  mean plane of the o s c i l l a t o r y  motion. - - 

The nutation matrix 

1 -8+ c o s  € Q  - &J s i n  e Q  

Q 1 -8€ ] 
8€ 1 Q 8+ s i n  E 

The geometric s ignif icance of 84, 8e,  and is shorn i n  f igu re  A-6; r e f e r  t o  paragraph 
114.6 f o r  a discussion of these parameters. 

The preceding expression f o r  [N] matrix is an approximation, val id  to  about 
0.5 x lo - * ,  The exact transformation is given i n  reference 6, pp. 67-68. More complete 
discussions of nutation may be found i n  references 22 and 23. 

The nutation t e rns  a r e  recomputed i f  needed and i f  t h e  p r io r  values a r e  more 
than 0.1 day old. 

A . Y . 3  L I B R A T I O N .  I t  is possible for  En o r b i t i n g  s a t e l l i t e  i n  a c i r c u l a r  o r b i t  t o  have 
an angular rotat ion i n  a d i r ec t ion  such t h a t  the s a t e l l i t e  tends t o  keep a constant face t o  
its attracting body. This condition can only e x i s t  i n  a t ru ly  c i r c u l a r  o r b i t .  I n  an eccen- 
t r i c  o r b i t ,  b ( f igure  A-7) is not constant: hence, t o  an observer on the a t t r a c t i n g  body, 
the s a t e l l i t e  appears t o  o s c i l l a t e  o r  l i b r a t e .  

In  t h e  Program, the l i b r a t i o n  matrix, [d, is used t o  cor rec t ,  when necessary, for 
the Moon's l ib ra t ion ;  t h i s  matrix gives the transformation from the  Moon-referenced axes 
system, xy Y, zM, t o  t h e  XE YE ZE System axes as shown i n  f igu re  A-8. 

- - -  - - -  
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COOBDINATE SYSTEIlS 

TRUL: EQUATOR / 
I O f  OAT€ 

F i g u r e  A - 6 .  Nutation 

where the tij are given i n  terms of the three angles 0' 

Angles 

A, i: 

X,, = cos  2' cos iz - si:: 9' s i n  A cos i 

t , ,  = - cos  R' sin A - s i n  0' cos A cos i 

A - 1 1  



ANALYTICAL B A S I S  

S A f F l  I ITF i13 = s i n  12' s i n  i 

t , ,  = s i n  fl' c o s  A 

t c o s  fl' s i n  A c o s  i 

8,, = - s i n  0' s i n  A 

t c o s  0' c o s  A c o s  i 

t2 ,  = - c o s  0' s i n  i 

Z,, = s i n  A s i n  i 

&32 = c o s  A s i n  i 

8,, = c o s  i 

I 
ATTRACT I NG 

BODY 

F i g u r e  A-  7. Libration Geometry 

h e  angles R ' ,  A, i a re  obtained as follows: 

s i n  a' = - s i n ( R  + u + S$q sin ( I  t p )  csc i ,  -90' < R'< t go' 

A = A + a  - R t r - u ,  0' 5 A 5 360' 

COS i = c o s ( I  + p )  c o s  + s i n  s i n ( 1  t p )  c o s ( R  t (T + S+), 

0' < i < go' 

where 

I = 1' 3 2 . 1 '  

s i n  A = - s i n ( R  + u t S$q csc i s i n  0' 5 A < 360° 

COS A = - cos(R + u + S+) c o s  R '  - s i n ( R  + cr + S+) s i n  R' COS 

7 = -0P003333 S i n  g +  000163888 s i n g '  + 0 ? 0 0 5  s i n  2w 
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COORDINATE sysmms 

YOOW'S TRUE 
EQUATOR 

- 

ECLIPTIC 
OF DATE 

EARTH'S TRUE 
EQUATOR OF DATE 

ASCENDING MOM O f  MOON'S 
TRUE EQUATOR ON EARTH'S 

ASCENDING NODE OF MOW'S.  
TRUE EQUATOR ON ECLIPTIC 

TRUE EQUATOR. 

F i g u r e  A - 8 .  L i b r a t i o n  Angles 

and 

g = 2 1 5 0 5 4 0 1 3  + 1 3 0 0 6 4 9 9 2  ( d  - dS0) 

g '  = 3 5 8 0 0 0 9 0 6 7  + 0 0 9 8 5 6 0 0 5  ( d  - dS0) 

w = 1 9 6 0 7 4 5 6 3 2  + 0 0 1 6 4 3 5 8 6  ( d  - dso) 

E E  = E + 8.5 9 

The l i b r a t i o n  formulas a r e  taken from re fe rence  6 ,  and may be found also i n  
references 6 and 20. A d e s c r i p t i o n  of EB' SE, 

used if they  were c a l c u l a t e d  less than 0.01 day previous ly .  

(7 , and &!J is given in paragmph k4.6. 

The l i b r a t i o n  matrix is recomputed when needed, except  t h a t  t h e  p r i o r  va lues  are 
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r -  A :* 5 e a  L... L ... T I  I " -a 
*. . y m n n m  n n i n  I A .  iiic &runnw mairix, LyJ, transrolllls a vector  from the  X 

system t o  the  XE, YE, ZE system. From references 6 and 20, t he  expression for [y is 
7' yG' ' 0  

c o s  y - s i n  y 

cos y 

0 0 

where y = y, + 6a degrees 

100?07554260 + Of9856473460 d i '  

+2?9015 x 10-13 t m e t '  
y M =  [ 

where 

A .  4 . 5  

:] 1 

modulo 360° 

d i  = IP [d - d,J ( d i m e n s i o n l e s s )  

t '  = [3600 ( t  - t t  t h r s )  + 60H min t sec] 

-j 1 6 4 0 0  3600 ( t  - t t  t h r s )  t 60H min + sec 
86400 

0.72921158558 x r a d i a n s  

(1 t 5.21 ~ 1 O - l ~  d i )  
o =  e sec  

IP [XI = i n t e g r a l  p a r t  o f  [XI 

6a = 6# c o s  E Q 

GENERAL PURPOSE ORTHOGONAL T R A N S F O R M A T I O N  M A T R I C E S .  The [ G I ,  [ D R d  and 
[SI transformation matrices l is ted i n  table A - 1  a l l  have t h e  same form: 

[GI = 

A- 14 

- 

J 
- s i n  A, - s i n  4, cos A, cos 4, cos h,  

c o s  A, - s i n  4, s i n  A, cos  4, s i n  h,  

0 cos 4, s i n  4, 



COORDINATE SYSTElS 

where 
observation station. 

and 4G are the geodetic longitude and latitude of the sub-vehicle point or of the 

For the [DRA] matrix, the right ascension of the vehicle or station replaces 
b, and the declination & replaces 4G. 

latitude 4" replaces c#J~. 

For the [SI matrix, the lunar longitude & of the vehicle replaces AG and lunar 

The above transformations may be obtained by inspection of figures A - 1  through A-3. 

A .  V .  6 WUTAT I OW AND L I BRAT I OW PARAMETERS. The nutation and libration matrices 
use, among others. the folloring panmeters: mean obliquity. E~ (figure A-6); nutation in 
obliquity. S E ;  mean longitude of descending node of the Moon' s mean equator on the ecliptic, 
R; mean longitude of the Maan. fl ; nutation in longitude. 6$. 
parameters. given in references 6 and 20, are as follows: 

Ihe expression for these 

€ Q  = 2304457874 - 0:01301376T - 0: 8855 x 10-6T2  503  x 10 -6T3  (1) 

AE = + 0: 255833 x I O - 2  cos  R - 0: 25 x I O - 4  COS 2R 

+ 0: 1530555 1 0 - 3  cos 2~ +0:  61111 1 0 - 5  cos ( 3 ~  - r) 

- 0: 25 1 0 - 5  cos (L tr) - 0: 194444 1 0 - 5  cos ( 2 ~  - n) 

- 008333 10-6  cos (2r' - R) 

dc = t 0 ~ 2 4 4 4 4 ~ 1 0 - ~ c o s 2 ~  + 0 ~ 5 ~ 1 O - ~ c o s ( 2 d  - 0 )  

= 12: 1127902  - 0: 0529539222 ( d  - dso) to:  20795 x 10-2T 
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a 
U = 640 37545167 + 13: 1763965268 ( d  - d 5 0 )  - 0: 1131575 x 1 0 - 2 T  

- 0: 113015 x 1 0 - 2 T 2  to: 19 x ~ o - ~ T ~  (6) 

84 = A$ + d $  ( d e g r e e s )  

A$ = - [O: 47895611 x to :  47222 x lO- 'T ]  s i n  R 

t 0: 580550 x s i n  2 0  - 0: 35333 x s i n  2L 

t 0430555 x 1 0 - 5 s i n ( (  t r ' )  to:16666 x 1 0 - 5 s i n 2  ( Q  - L) 

+ 0: 16666 x s i n  ( f  - r' +a) t 09 16666 x s i n  ((I -r' - 0) 

- 0: 13888 x 1 0 - 5  s i n  ( 3 4  - 2~ tr ' )  - 0: 1111 x 1 0 - 5  s i n  ( 3  (I -r' - 0) ( 9 )  
~ 

where r, r', L are obtained from 

= 282008053028 +00470684  x ( d  - d S 0 )  t o 0 4 5 5 2 5  x i r 3 T  

L = 280008121009 +0:9856473354 ( d  - d 5 0 )  to:  302 x 1 0 - 3 T  to: 302 x 1 0 - 3 T 2  ( 1 2 )  
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APPERDIX B 

TRANSFORMATION FROM A POWER SERIES 
TO A CEEBYSBEV POLYNOMIAL SERIES 

Lsnczos (reference 24) has  pointed out  that f o r  a specif ied to le rab le  ermr i n  a 
given fuuction. t h e  Chebyshev polynomial expansion of t h e  function converges more rapidly 
than any other  polynomial representation. Stated another way, f o r  a given number of te rns ,  
t h e  mebyshev expausion is t h e  most accurate. In addition, a simple algorithm m a y  be used t o  
collpute the  (k + 1lth mebyshev polJnolial given t h e  ktb and (k - l)th terle. 
it is sometimes desirable to  convert a function from a power series representation t o  a 
Chebyshev exgmueion. 
t h e  ChebJsbev expansion given t h e  power series coeff ic ients .  

Consequently. 

A general procedure Is described here f o r  obtaining coef f ic ien ts  o f  

B .2 CHEBYSHEV POLYWOM I ALS 

Consider an arbitrary integrable  function o f  bounded var ia t ion ,  

nhich is defined over some i n t e r v a l  -xM 5 x 5 xY' Let the  power series expansion of equation 
(1) be 

f ( x )  = Pi + P;x + P2' 12 + . . . . (2) 

With appropriate normalization of the  independent var iable ,  equation (1) may equally well be 
aeveioped is a series of Chbyskev ml,mials, 

KO 
f ( t )  = y + K I T l ( t )  + K 2 ( t )  + . . . . , 

where t h e  g(t) are functions of t h e  noxmalized variable.  t. o r  i n  a series o f  sh i f t ed  
Chebyshev polynomials 

(3) 

* * 
(4) 

Kd 
f ( t ' )  =-+ K; T1 ( t ' )  + KZT2 ( t ' )  + . . . . 

2 
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* 
where t h e  TI, [t'! R ~ P  f l l n ~ ! ? ? ? ~  zf tkc x z i ~ l L 4  variauie, c ' .  
is obtained from equation (1) by normalizing x such t h a t  

me series of equation (3) 

X 
-. - - cos e = t 
X U  

For t h i s  normalized var iable ,  t h e  K, coef f ic ien ts  are given by 

Also, given t h a t  

T o ( t )  = 1 

( 5 )  

t h e  recursive formula f o r  T,+l (t) is 

Similarly, t h e  series of equation (4) is obtained by def ining a normalized va r i ab le ,  t ' ,  
having a range only from 0 t o  1: 

Given t h a t  

* 
To ( t ' )  = 1 

* 
T1 ( t ' )  = 2 t '  - 1 

* 
rt 1 

t h e  recursive formula f o r  T (t ') is 

* * * 
T r + l ( t ' )  = 2 ( 2 t '  - 1)T ,  ( t ' )  - T r - l ( t ' )  

I t  follows from the  normalizing equations,  (5 )  and (9 ) ,  t h a t  t h e  r e l a t i o n  between 
t h e  s h i f t e d  and unshifted polynomials is 

(11) 

(12) 
* 

T , ( t )  = T r ( 2 t '  - 1) = T, ( t ' )  
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CBEBYsPEV POLYNOIIALS 

Cbnseqoently. t he  c o e f f i c i e n t s  of the s e r i e s  o f  equations (3) and (4) are equal so t h a t  

K,' = K, (13) 

Evaluation of equation ( 6 )  therefore provides the  c o e f f i c i e n t s  f o r  both series. 
now to de ter r ine  t h e  IC, c o e f f i c i e n t s  given t he  P,' c o e f f i c i e n t s  of equation (2). 

I t  remains 

B= 3 DETERM I HAT I ON OF THE CHEBYSHEV COEFF I C I ENTS 

The series of equation (2) when rewrit ten i n  t e r n s  of the  normalized var iab le  t 
bt?CUBeS 

+ p ; x , 2 -  + .  . . . (:, Y f ( t )  = Pi + P' x B k )  

Redefining the  c o e f f i c i e n t s  of the expansion such that 

P, = Pr' (x,) 

equation (14) becaes 

f ( t )  = Po + P l t  + P Z t 2  + . . . . 

If the integrand of equation (6). f ( t )  T,(t), is expanded i n  a power series i n  t. the 
funct ional  form of t h e  typical i n t e g r a l  f o r  a given tern i n  the  series w i l l  be 

t " d t  
1; = J- 

Evaluating 1', 

0 ,  i f  n is odd 

n. i f  n = 0 

( n -  f ) ( n -  3 ) ( n -  5)  ... 3 - 1  

n ( n  - 2 )  ( n  - 4 ) .  . . 4 * 2  
n. i f  n is even  

1; = 

Multiplying I,,' by the 2/n f a c t o r  of equation (6). 
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2 ,  i f  n = 0 

( n  - l ) ( n  - 3 )  ( n  - 5 ) .  . . 3 * 1 . 2 ,  i f  n i s  e v e n  

2 l -  - I n  - I n  - 
n 

I 
L n ( n  - 2 ) ( n  - 4 ) .  . . 4 ' 2  

I f  equation (16) is rewri t ten as 

equation (6) becomes 

From equations (19) and (21),  the f i r s t  coef f ic ien t  is 

where 

( 2 q -  1 ) ( 2 q -  3 ) ( 2 q -  5 )  . . .  3 . 1  

( 2 q ) ( 2 q -  2 ) ( 2 q -  4 )  . . .  4 ' 2  
C"(29)  = 

(19) 

(23) 

2q is subs t i tu ted  f o r  n i n  equation (19) s i n c e  only even values of  n y i e l d  non-zero Values of . 
The remaining coef f ic ien ts  may be infer red  by induction: 

a3 

K, = 2 Z C ~ C ~ ( ~ ~ ) P ~ ~ - ~ ,  i f  r i s  o d d  
q= 1 

(24) 

(25) : I 
where 
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The swtians of equstions (22), (24). end (25) are carried out to a finite l i m i t  
corensnrate w i t h  the desired accuracj. 
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APPENDIX C 

PROPAGATION CORRECTIONS 

C. I I NTRODUCTI ON 

The bending of radio waves passing through t h e  troposphere and ionosphere limits 
t h e  inherent  precis ion of modem elec t ronic  t racking systems. 
cor rec t ion  for refractive effects is necessary to achieve the  maximum accunrcy o f  the  satel- 
l i t e  t racking system. 

Therefore, s a e  form of 

Tropospheric error can be corrected e i t h e r  a n a l y t i c a l l y  o r  numerically. The 
a n a l y t i c a l  method assumes t h e  index of re f rac t ion  decays exponentially as altitude increases.  
The tropospheric errors f o r  range and e l e m t i o n .  r e s u l t i n g  f r o m  re f rac t ion ,  are therefore  
solvable  i n  closed fora  as a functicm of the elevat ion angle. 

The numerical method does not  assme a specific v a r i a t i m  of index of refracticm 
with a l t i t u d e :  any model describing the  var ia t ions can be used. 
are detennined by numerically in tegra t ing  over the  total propagation path, the index of re- 
f r a c t i o n  a t  each in tegra t ion  point  being determined by the assumed d e l .  

The tropospheric errors 

Because of the complex nature of t h e  ionosphere, it is v e m  d i f f i c u l t  t o  find a 
simple model to use as a basis for an analy t ica l  so lu t ion  to the  ionospheric errors; there- 
fore, a numerical approach is indicated. As a refinement, the  re f rac t ion  correct ion is made 
dependent upon t h e  predicted evaluation angle r a t h e r  than the  measured elevat ion angle. 
Since t h e  predicted angle  is subjec t  t o  error. a test is made on the  variance of the pre- 
d ic ted  angle. 
clude t h e  data point  and thereby provide a better estimate of the  elevat ion angle before 
making the  f i n a l  correction. 
angle,  and the  r e s u l t s  of the i t e r a t i o n  are  used by t h e  statistical filter. The Program 
u s e s  a numerical approach f o r  the  correct ion of tropospheric errors to be compatible with 
t h e  n m e r i c a l  so lu t ion  of the  ionospheric model. As a resu l t ,  in tegra t ion  over t h e  t r o -  
pospheric and ionosphere may be performed by the  same routine.  

If the  variance is above a predetermined l i m i t ,  an i t e r a t i o n  is made to in -  

The re f rac t ion  correct ion is then based upon the  new elevat ion 

In  addi t ion to r e f r a c t i v e  bending, the  problem of  s igna l  re ta rda t ion  which r e s u l t s  
i n  range e r r o r ,  and the  e f f e c t  of re f rac t ive  bending on range rate measurements are included 
i n  t h e  following analysis. 

C.2 t~ETHOD USED 

C.2. I GENERAL. 'Ihe methnri nsed to detexmine re f rac t ion  cor rec t ions  i n  both t h e  
troposphere and the  ionosphere i 
25). In  Weisbrod's method, h e r e  are no l imi ta t ions  on the shape of the index of refrac- 
t i o n  p r o f i l e  o r  angle of elevatlari. 

- simple one which was derived by S. Weisbrod (reference 

The following assumptions are made: 
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ANALYTICAL BASIS 

a. The gradient of t.hp indey  ef ~efrz:ti!x -.-::::z ~i,:y "it;, o ; t i L ~ & ,  i . e . ,  raa ia i iy .  

b. The index of refract ion p r o f i l e  can be approximated by a number of l i n e a r  segments, 
the length of each segment being very small compared to  the E a r t h ' s  radius. 

C . 2 . 2  INDEX OF REFRACTION MODELS 

C .  2 . 2 .  I Genera  1 .  It is an almost impossible task to  analyze completely the  atmospheric 
propagational e f fec ts  from al l  possible conditions. Therefore, atmospheric models represen- 
t a t i v e  of average conditions a r e  employed to  s impl i fy  the computational problem. 
models used, the following assumptions a re  made: 

I n  the 

a. 
w i th  height. 

b. 

The troposphere extends to approximately 40 kilometers wi th  r e f r a c t i v i t y  decreasing 

The region between the end of the troposphere and the beginning of the ionosphere 
is assumed t o  have zero re f rac t iv i ty .  

c. 
k i 1 ometers. 

The ionosphere l i e s  between a height h, ( r e f e r  t o  paragraph C.2.2.3.1) and 2000 

d. The r e f r a c t i v i t y  is zero i n  the  region beyond 2000 kilometers. 

In general, the  equations used t o  compute range and elevat ion e r r o r s  a re  the  same 
f o r  both the troposphere and the ionosphere. Re f rac t iv i ty ,  however, is computed d i f f e r e n t l y  
f o r  each. 

Computed so lu t ions  can only be a s  accurate as the models assumed. However, s ince  
p r o f i l e s  of the  index of refract ion i n  the atmosphere (especial ly  f o r  the ionosphere) a r e  
not precisely known under a l l  conditions,  a more exact solut ion is not warranted a t  t h i s  
time. 

C . 2 . 2 . 2  T r o p o s p h e r i c  M o d e l .  I n  the tropospheric model, r e f r a c t i v i t y  is assumed to 
decay exponentially, wi th  the ground index of r e f r ac t ion  and the sca l e  height as  parameters. 
The equation f o r  the tropospheric model is a s  follows: 

where 

No = 313 ( r e f r a c t i v i t y  a t  s e a  l e v e l )  

h = h e i g h t  above  t h e  E a r t h  

H = 7 k i l o m e t e r s  ( s c a l e  h e i g h t )  

n = i n d e x  o f  r e f r a c t i o n .  
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PUOPAGATION CORRECTIO- 

Por the tropospheric model. the re f rac t ive  errors are considered to be independent 
of signal frewency s ince  the index of re f rsc t ion  is v i r t u a l l y  independent of frequency up 
to 30,000 megacycles. 

C.2.2.3 Ionospher ic  Wodol 

C. 2.2.3.1 Ionospheric Parameters. In the ionospheric d e l ,  t h e  index of r e f r s c t i o n  is 
dependent apon mre p a r u e t e r n  than those considered f o r  the tropospheric model. 
I O n O S p h e r e  consists of several  belts of charged particles. The F layer is very much larger 
than m~ other  layer, and therefore  cmtains a greater number of charged particles than the  
o t h e r  layers. 
the Fl and Fa layers. 
pendent upon t h e  height, ho, of the b e  of the ionosphere's F'2 layer. the  m a x i m  e lec t ron  
dens i ty  of the F'2 layer, and the height of the .ax- e lec t ron  density of the  F'2 layer. 

The 

The P layer is t h e  one closest t o  the Fbrth's  surface. It is subdivided i n t o  
I n  t h e  Ionospheric model. t h e  index of re fnrc t ion  is primarily de- 

Both index of re f rac t ion  and the height ho are dependent upon diurnal.  solar 
a c t i v i t y ,  seasonal. and geographical var ia t ions  as well as other miscellaneous sporatic 
variations. 
are frequency dependent. 

Unlike t h e  tropospheric model, the ref rac t ive  errors i n  t h e  ionospheric model 

I n  construct ing the d e l .  the  range of the s i g n a l  frequency h a s  been l imited to 
frequencies above 100 megacycles s ince  this nrnge of the spectrum both represents the s i t u a -  
t i o n  of greatest i n t e r e s t  and enables equation s implif icat ion.  

C.2.2.3.2 Electron Density Prof i le .  The re la t ionship  between the index of re f rac t ion  (n) 
t he  angular  frequency o f  t h e  incident  s ignal  (a), and the e lec t ron  densi ty  in  the  ionosphere 
(reference 25) is given by 

where 

p, = e l e c t r o n  d e n s i t y  per c u b i c  meter 

e = e l e c t r o n  c h a r g e  ( 1 . 6  X lo-'') 

m = e l e c t r o n  mass (9 .08  X 

e o  = p e r m i t t i v i t y  of f r ee  space ( 8 . 8 5 4  X 

Using the  first two terms of t h e  binomial expansion as an approximation, the  
equation f o r  the  index of re f rac t ion  reduces to 
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ANALYTICAL BASIS 

n 
e - n - 1 - 4 0 . 3 -  

f 2  
( 3 )  

where f = W2n. 
which is defined as 

This equation is t r u e  f o r  frequencies above the  cri t ical  frequency. f,, 

( 4 )  
- 
- 8 . 9 7  p o l l 2  X m e g a c y c l e s  p e r  s e c o n d  

f c 

where p, is t h e  maximum electron densi ty  per cubic  meter. 

From the def in i t ion  of N o f  equation ( l ) ,  equation (3) can be written as 

pe 

f 2  
N = - 4 . 0 3  - x ( 5 )  

The model selected f o r  e lec t ron  dens i ty  versus  height  consists of a parabol ic  
v a r i a t i o n  below the height  of maximum electron densi ty  matched t o  a hyperbolic secant  p r o f i l e  
above the maximum. The re la t ionships  are as follows: 

- p, - p, s e c h  

where 

h - h o  
u =  

hnl - ho  

h = h e i g h t  a b o v e  t h e  E a r t h  

h, = h e i g h t  o f  t h e  b a s e  o f  t h e  F2 l a y e r  

h, = h e i g h t  o f  t h e  maximum e l e c t r o n  d e n s i t y  i n  
t h e  F2  l a y e r  
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PRWAGATI01Y CORRECTIONS 

Ihe d e l  hrs the following ch.racteristics: 

a. 'Ihe model has three degrees of freedom (ho, h,. and po) which uniquely specify the 
e n t i r e  di8tribatiam. These prrrpeten, can be obtained fmar ionogmm data. 

b. The e lec t ron  d i s t r i b u t i o n  is parabolic below the .uirrm electron density height. 
near ly  pu+bolic ilediately above the nxlmm. ud expanential a t  great heights. 

is t h r e e  times that below it. 
c. Tbe electmn content of the d i s t r ibu t ion  above t h e  maximum electron density height 

d. 'Ihe e n t i r e  electran density pmfile .nd its der iva t ives  are continuous everywhere. 

Piman C-1 is a plot of the iowsphere model normalized with respect to u and 
1/2 @=/Po). Tbe ho, h, md po panmeters refer to t h e  ionosphere's F layer. Using this 
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Figure C-f N o r r u l i z c d  3 - P a r u r e t e r  Model  of Atmosphere 
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I ANALYTICAL B A S I S  

model. t h e  r e f r ac t ive  e f f e c t s  o f  t h e  D and E layers  are not  singled ou t ,  because they are 
qu i t e  small i n  comparison with those due t o  the  F layer and are approximately accounted for  
by allowing t h e  electron density a t  t h e  bottom edge of t h e  F lwer to he zero. 

C.2.3 D e t a i l e d  A n a l y s i s  

C. 2. 3. I c o m p u t a t i o n  o f  Ray Bending. Consider a ray -(figure C-2)  enter ing,  a t  an 
angle of 3. an infinitesimal layer of thickness dP. 
t o  t h e  component of the  r e f r ac t ive  gradient normal to the  ray divided by the  index o f  
r e f r a c t  ion, 

Since the  curvature of the  ray is equal 

1 - 1  dn 
K ' n  dP 

c o s  - - -  - 

where K is t h e  radius o f  curvature, 

The length o f  t h e  raylpath i n  t h e  layer is 

K d y  = csc $ d,3 

which, when combined with equation ( 7 ) ,  gives  

1 dn  

n d P  
d y  = - - c o t  2 dP.  

The dy's of  a l l  elementary layers  are d i r e c t l y  addi t ive ;  therefore ,  considering 
I d y ' s  due to bending between poin ts  Q and R,  i t  follows t h a t  the  contribution t o  the  total  

bending y ,  from a layer  bounded by t h e  he ights  Pj and Pk is 

P r k  
1 dn 

c o t  2 dP. 

( 8 )  

( 9 )  

(10) 

I f  the ray depar t s  from t h e  Ear th ' s  surface with an e leva t ion  angle Of then 
from Snell 's law for  spherical  s t r a t i f i c t i o n  

n o  a c o s  eo = nP C O S  3 = c o n s t a n t  ( 1 1 )  



TANBENT AT R 

~~~~ 

PROPAGATION CORRECTIONS 

Figare  C-2 Ceoaetry of Bending Through an Infinitesiaal Layer 

where 

no = index of r e f r a c t i o n  a t  t h e  Earth's  s u r f a c e  

a = Earth's radius  

P = 8 + h  

h = h e i g h t  above Earth 

n = index of r e f r a c t i o n  a t  h 

~ o a  ~ Q U ~ ~ I O X I  (11). 
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ANALYTICAL BASIS 

s i n  P 
. .. [%I 

L 

2 r=i 1;;; c o s 2  e, 

1 / 2  

= p][ [SI - c o s 2  

1 / 2  

.= [[%I - c o s 2  Pi] cos pi 

( 1 3 )  

( 1 4 )  

where n, P, and 9 are the values of these .parameters a t  h. 

Equation (14) can be substituted into  equation (10) to g ive  the general equation 
for refract ive  bending: .. 

dn c o s  e, - dP 

dP ( 1 5 )  
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a. * = - k. where k is a constant.  
dP 

b. Pk - Pj  <<.Pj 1 
a 

c. The Index of r e f r a t i o n  n is very nearly  equal to unity. 

on the -is of the UlmDDtiOas md fm figam c-2, 

2 [nfq = { - (Itj - 1 0 - 6 ] b  + (p ;jp”]} 

Bxuanding sqaation (17) and using only the first two tern. 

2(P - P j )  (1 - k Pj) 
pJ 

and. substituting i n  equation (15) 

- 1/2 
b i n 2  Bj + 2(P -Pj) (1 - k  Pj) /P j l  dP 1 Y j k  = k cos Pj 

k Pj cos pj 1/2 { [ s i n 2  pj + 2(Pk - P j )  (1 - k  Pj) /P j l  - s i n  8,) - - 
1 - k  Pj 

(17) 

(18) 
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ANALYTICAL BAS1 S 

and combining with equation (19) 
I .  

k Pj cos' p, 
. ( t a n  Pk tan p,). - 

Y j k  - 1 - k  P j  

From equations (141, (16).  and (18) 

k P, ~ ( N J  - N k )  sec'  pj 
l o - 6  - - 

1 - k  Pj sec'  - sec' p j  

2 ( N j  - N k )  s e c 2  pj 

. tan2 P, - tan2 P j  
1 0 - 6  , - - 

, 

which, when substituted i n  equation (21) .  gives 

c-10 
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I -  

C 

Tbhl benllng thnmgh the 8t.Ospbere is sirply the  am of the Individual c a n t r i -  
batioru; therefore, 

It is fmqaentb ararsnisat to #rsan the refroctire ermr In  torrs of the angle 
subtended fm the Earth's center .  This qmntltj., e. is &lb obtain& fm figure C-3. 

no con 6 = B cos /3 

= [I + (N, - N) COS e 

cos e = cos [B + (e - ,911 

= 11 - (No - N) loe6]  COS fi  (26 )  

E4tumfrn of emation (28) and the 8ppl ica t ion  of mll -le .peroximations 
re8ult.8 in 

1 /2  = (11 + 2(N0 - N) 10" cot2 /3] - 1) t a n  #? (27) 

Ibr rys departing t ~ ~ g ! ~ ~ a i l ~  a t  heights above the tmxioophere, o r  for rngles of 
elenticm m t e r  tbn 100 m i ~ i r u i i u u ~  rt mj height. the angles 8 rod #? a n  r e v  nearly 
e d  uul eqlu t ion  (27) rectnao to 

(e -8) 2 (N, - N) 10-6 cot  e 
(No - N )  c o t  #?. (28 )  
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I ANALYTICAL BASIS . 

TANGENT TORAY AT p 

I Figure C - 3  Geometry of B e n d i n g  Through a Refractive Layer 

C .2 .3 .2  C o m p u t a t i o n  o f  E r r o r s  i n  P r i n c i p a l  M e a s u r e m e n t s  

C. 2.3.2.1 Elevation Angle Error. In moat practical applications, the quantity Of greateSt 
interest is the elevation angle error, 6. 
use of the law of sines: 

This quantity is obtained from figure C-3 by the 

. 
From equatlon (29), 

s i n  E tan 8 + ( 1  - C O S  E) 
tan S = 

s i n  E + c o s  E tan e - tan 8, ' 
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md when f is a -11 augle. 

e t a n  8 + e3/2 

e + t a n  6 - t a n  6, 
6 =  ( 3 0 )  

m t t i n g  e2/2 in tht n m e r a t o r  of eqort ion (30) r e s u l t s  i n  an error of abaut f i v e  
percent in the tmpouphere for I tangontially deputing rry. A t  hieher  angles of elevat ion 
or grerter heights ,  this e m r  beeaea negligible.  

thmugh various layera. a n  d i rec t ly  rdditive, the elevat ion angle emrs  are not. Thus. 
to evaluate 8 at iorrospberic heights or above, it is f i r s t  necessar j  to c a b i n e  the tropo- 
Spheric md the icmoapheric e's or 8's .nd then use equation (30). &meter. in nearly a11 
prac t ica l  crses above the troposphere, e2/2 is rem much less than E ami e is re- ad less 
than (tm 6 - tan 19,). 
denominator usual ly  results in leas thrn five percent error a t  heights  in the F region. 

It ahould be noted tbrt where- angles y md E ,  due to the PISMge of the raj 

CfmaeqPently. the aisaion of c2/2 in the maerator and e i n  t h e  

(30) CUI thUS be WproXbted bY 

e t a n  6 
t a n  6 - t a n  6, * 

8 2  ( 3 1 )  

It is, therefore ,  j u s t i f i a b l e  to add d i r ec t ly  the  tropospheric and ionospheric 
8's to obtain the total elevat ion angle error. 

C.2.3.2.2 
tim. Ctr, caused by a lwer of thickness dP (figure C-2) is given bo 

Signal Retardation in  a Constant Refractive Gradient Reelon. The sienal ntnrda- 

where 

. 

dP  N csc p dP 
1 0 - 6  

Lv J C C 

c = s i g n a l  v e l o c i t y  i n  f ree  space 

v = s i g n a l  v e l o c i t y  i n  t h e  medium. 

( 3 2 )  
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ANALYTICAL BAS1 S 

The range propagation error, Ar. is given hv 

1 1 

Subst i tut ing equation (14) i n t o  equation (16) and solving equation (23). 

The value of t h e  i n t e g r a l  f o r  t he  case of a constant  r ad ia l  gradient is found t o  
be very near ly  equal to the  value of the  in t eg ra l  obtained when taking the  average value of 
t h e  denominator of the i n t e g r a l  and t r e a t i n g  it as a constant,  
can j u s t i f i a b l y  be t r ea t ed  i n  a similar manner f o r  two reasons. 
and tangent o f  small angles are very near ly  t h e  same, and the  o t h e r  reason is t h a t  t h e  rate 
of change of t he  s i n e  is very slow a t  large angles. 

The in t eg ra l  i n  equation (33) 
One reason is t h a t  t h e  s i n e  

To evaluate equation (331, set  

P r k  P r k  

N d P  
N X 2 x 10-6 

d P  = 
s i n  Pi + s i n  Pk 

From equation (16), 

N d P  = fk [ N i  - k ( P  - P i ) ]  d P  

P i  P i  

( 3 5 )  
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S u b t i t u t i n g  t h i 8  Wue. 

"IOOPAQATION CORRECTLOWS 

Tn ca&e si- r e k r d a t l o n  for a double passage tkrnagh the layer. the value 
0 

of eqnrticm (37) rast be doubled. Therefore. 

In t he  iarrwphexe, the eqr r t ion  for  range pmpagation e m f  is 

f l  = up f r e q u e n c y  

f 2  = down f r e q u e n c y  

C.2.3.2.3 Doppler Error. Due to refnrct ive bending, there  is an error i n  the  meamrraent 
of the mdial caponent  of the target velocity. 
rerdlly derived with the aid of figure C-4. 

"be equation describing t h i s  error can be 
kt 

R = s t a t i o n  l o c a t i o n  v e c t o r  i n  i n e r t i a l  c o o r d i n a t e s  

r = p o s i t i o n  o f  s a t e l l i t e  w i t h  respect t o  t h e  E a r t h ' s  
c e n t e r  i n  i n e r t i a l  c o o r d i n a t e s  

pt = p o s i t i o n  of s a t e l l i t e  w i t h  respect t o  t h e  s t a t i o n  
i n  i n e r t i a l  c o o r d i n a t e s  

p = p o s i t i o n  o f  s a t e l l i t e  w i t h  respect t o  t h e  s t a t i o n  
i n  t o p o c e n t r i c  local  moving c o o r d i n a t e s  

Q = E a r t h ' s  r o t a t i o n  v e l o c i t y  v e c t o r - , - i n  i n e r t i a l  
c o o r d i n a t e s  

[ A ]  = c o o r d i n a t e  c o n v e r s i o n  t r a n s f o r m a t i o n  matrix 
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ANALYTICAL BASIS 

t' n 

TE 

. 

Figure  C - 4  D o p p l e r  Error  C e o n e t r y  

- 
i ' , I ' , , '  = u n i t  v e c t o r s  in the i n e r t i a l  coordinate  system 
- 
1 ,  I, E, = u n i t  v e c t o r s  in t h e  t o p o c e n t r i c  moving coordinate  

SYS tem 

I Therefore, 

C-16  

r = x i f  t Y f '  t z E' 
f = i j - ' t Y T ' + i ; , '  

R = Q x R  

p ' = r - R  



PROPAGATTION CORRECTIONS 

I .  

I -  

. 

where X. 1 rad Z are the magnitudes of the x-, y-. and z- wmponents of r. Let 

I n  the  moving coordinate system. the re l a t ive  veloci ty  between sta ion and vehicle is 
described by 4 

where 

>x = v e l o c i t y  component a l o n g  t h e  loca l  r a n g e  v e c t o r  

b, = v e l o c i t y  component normal  t o  t h e  l o c a l  r ange  v e c t o r  
i n  e p l e n e  Getencinod by t h e  t r a n s m i t t e r  beam and 
t h e  E a r t h ' s  c e n t e r  

iz = v e l o c i t y  component normal  t o  a p l a n e  d e t e r m i n e d  by 
t h e  t r a n s m i t t e r  beam and t h e  E a r t h ' s  c e n t e r  

t 

F m  figure C-3. the .emred m l u e  of range rate is along the a m r e n t  path or along the  
tangent to the path a t  the  satellite. Here. . 

V measured = I?, cos ( y  - 6) - iy s i n  ( y  - 6 )  

V radial  = >= 

C - 1 7  
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~ C.3 COMPUTATION OF ERRORS I N  SECONDARY ANGULAR MEASUREMENTS 

ANALYTICAL B A S I S  

Av, = V r a d i a l  - V m e a s u r e d  

- 
- jx - b, c o s  ( y  - 6) + by s i n  (Y - 8 )  

i 
and s ince  (y - 6) is a very small angle', then 

( 4 4 )  

and is doubled for  t h e  round t r i p  error. 

I n  the ionosphere, t h e  correct ion f o r  range rate is modified as follows 

NOTE: The elevat ion angle error 8 must be transformed i n t o  t h e  
coordinate system of the  secondary angular  measurements i n  order 
to  determine the equivalent e r r o r  i n  these systems. 

C. 3 .  I 
angle  6 system t o  other systems, see f igu res  C-5 and C-6. 
r e l a t i o n s  hold for  the x-y angles: 

C O O R D I N A T E  C O N V E R S I O N S .  To convert from the azimuth angle 4 and elevat ion 
From f igu re  C-5. t h e  following 

s i n  y = c o s  6 c o s  4 

cos y s i n  x = c o s  6 s i n  4 

c o s  y c o s  x = s i n  6 

hence, 

t a n  x = c o t  6 s i n  4 

( 4 7 )  

( 4 8 )  

where 

C - 1 8  

X is t h e  X-  a n t e n n a  a n g l e  

Y is t h e  Y- a n t e n n a  a n g l e  



UP 

PROP AG AT1 ON CORRECT IONS 1 

F i g u r e  C-5  Geometry for  C o n v e r t i n g  t o  x - y  and 8 - n  S y s t e m  

F m  figure C-5, the following relations hold for the 8-m direction cosine 
system: 

4 = COS e s i n  4 

m = COS 0 COS 4 

where 

8 i s  the measured 8 d i r e c t i o n  cos ine  

m i s  the measured m d i r e c t i o n  cos ine  

c-19 



ANALYTICAL B A S I S  

c 

I 
NORMAL T O  
EQUATOR I A L P L A &  E 

SIN e SIN A + cos e COS 9 COS A 

Y AXIS 
PARALLEL 
TO POLAR 

/ ip ’  COS d COS h C O S 8  Cost$ SIN A - S I N  8 COS A 

Figure C - 6  Geometry f o r  Converting t o  \{our Angle - Declination System 

c - 2 0  



I PROPAGATION CORRECTIONS 

i 
I Frm f igure  C-6. t h e  following r e l a t i o n s  hold for the hour angle-declination system: I 

I 
I 

s i n  d = s i n  8 s i n  A + COS 8 COS 4 cas A 

r 

cos d s i n  h = cos 8 s i n  4 

cos d cos h = cos B COB 4 sin A - s i n  8 cos A 

hence, 

s i n  4 
t a n  h = 

cos 4 s i n  A - t a n  8 cos X 

(50)  

(51  1 

where 

d is t h e  measured  d e c l i n a t i o n  

h is  t h e  measured  h o u r  a n g l e  

A is t h e  s t a t i o n  l o c a t i o n  l a t i t u d e  

4.4 .3 .2  ERROR COMPONENTS. A aarll deviat ion i n  the e leva t ion  angle 8 rill cause 
a small deviat ion i n  the secondam nngles. 
d i f f e r e n t i a t i n g  the coordinate converelon expressions found In mragmfi C. 4.3.1 w i t h  
respect to the e leva t ion  angle. 

For the x - y system 

The magnitudes of the e m m  are determined by 

s i n  4 C S C ~  e - s i n  c o s 2  x - -  a x  - 
ae sec2 x sec2 e 
- - -  

37 - 
ae cos 9 

COB 4 s i n  8 - - -  

hence, 

b x = - 8  ax 
ae 

c-21 



I ANALYTICAL BASIS . 

For the 4 - m  system 

= - s i n  6' s i n  4 ;te 
ae - 

hence, 

6 
x 
as 

= -  

For the hour angle - declination system 

a d  COS 8 s i n  A - s i n  8 COS d COS A 
ae cos  d 

1 s i n  6 cos  A sec2  e 
( c o s  4 s i n  A - tan 6' cos  A ) 2  

- s i n  4 cos A c o s 2  h 

I c - 2 2  
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